正則行列
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は英語版の対応するページを翻訳することにより充実させることができます。(2024年5月)翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。

英語版記事を日本語へ機械翻訳したバージョン(Google翻訳)。

万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。

信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。

履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。

翻訳後、{{翻訳告知|en|Invertible matrix|…}}をノートに追加することもできます。

Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針についての説明があります。

正則行列(せいそくぎょうれつ、: regular matrix)、非特異行列(ひとくいぎょうれつ、: non-singular matrix)あるいは可逆行列(かぎゃくぎょうれつ、: invertible matrix)とは、行列の通常の積に関する逆元を持つ正方行列のことである。この逆元を、元の正方行列の逆行列という。例えば、複素数体上の二次正方行列 A = [ a b c d ] {\displaystyle A={\begin{bmatrix}a&b\\c&d\end{bmatrix}}}

が正則行列であるのは ad − bc ≠ 0 が成立するとき、かつ、そのときに限る。このとき逆行列は A − 1 = 1 a d − b c [ d − b − c a ] {\displaystyle A^{-1}={\frac {1}{ad-bc}}{\begin{bmatrix}d&-b\\-c&a\end{bmatrix}}}

で与えられる。

ある上の同じサイズの正則行列の全体は一般線型群と呼ばれるを成す。多項式の根として定められる部分群は線形代数群あるいは行列群と呼ばれる代数群の一種で、その表現論代数的整数論などに広い応用を持つ幾何学的対象である。
定義

n 次単位行列を En や E で表す。 の元を成分にもつ n 次正方行列 A に対して、 A B = E = B A {\displaystyle AB=E=BA}

を満たす n 次正方行列 B が存在するとき、A は n 次正則行列、あるいは単に正則であるという[注釈 1]。A が正則ならば上の性質を満たす B は一意に定まる。これを A の逆行列(ぎゃくぎょうれつ、: inverse matrix)と呼び、A−1 と表す[1]

次の複素数[注釈 2]の元を成分にもつ行列 A, B を考える。 A = [ 1 0 0 2 ] B = [ 1 0 0 1 2 ] {\displaystyle A={\begin{bmatrix}1&0\\0&2\end{bmatrix}}\quad B={\begin{bmatrix}1&0\\0&{\frac {1}{2}}\end{bmatrix}}}

このとき AB = E = BA を満たすので、A は正則行列で[注釈 3]、B は A の逆行列である。一方、B に注目すれば B も正則行列で、A は B の逆行列である。

また次の行列 N は逆行列をもたないので、正則ではない。 N = [ 0 1 0 0 ] {\displaystyle N={\begin{bmatrix}0&1\\0&0\end{bmatrix}}}
特徴づけ

の元を成分にもつ n 次正方行列 A に対して次は同値である。

A は正則行列である

AB = E となる n 次正方行列 B が存在する[2]

BA = E となる n 次正方行列 B が存在する[2]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:34 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef