楕円曲線
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。正確な表現に改訳できる方を求めています。

この記事の正確性に疑問が呈されています。問題箇所に信頼できる情報源を示して、記事の改善にご協力ください。議論はノートを参照してください。(2015年3月)
楕円曲線のカタログ、示されている領域は [−3, 3]2 である。ただし(a, b) = (0, 0) におけるものは楕円曲線ではない)。

数学における楕円曲線(だえんきょくせん、: elliptic curve)とは種数 1 の非特異射影代数曲線、さらに一般的には、特定の基点 O を持つ種数 1 の代数曲線を言う[1]

楕円曲線上の点に対し、先述の点 O を単位元とする(必ず可換な)をなすように、和を代数的に定義することができる。すなわち楕円曲線はアーベル多様体である。

楕円曲線は、代数幾何学的には、射影平面 P2 の中の三次の平面代数曲線として見ることもできる[2]。より正確には、射影平面上、楕円曲線はヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形 Y 2 Z + a 1 X Y Z + a 3 Y Z 2 = X 3 + a 2 X 2 Z + a 4 X Z 2 + a 6 Z 3 {\displaystyle Y^{2}Z+a_{1}XYZ+a_{3}YZ^{2}=X^{3}+a_{2}X^{2}Z+a_{4}XZ^{2}+a_{6}Z^{3}}

により定義された非特異な平面代数曲線に双有理同値である(有理変換によってそのような曲線に変換される)。そしてこの形にあらわされているとき、O は実は射影平面の「無限遠点」である。

また、係数体(英語版)の標数が 2 でも 3 でもないとき、楕円曲線は、アフィン平面上次の形の式により定義された非特異な平面代数曲線に双有理同値である。 y 2 = x 3 + a x + b   . {\displaystyle y^{2}=x^{3}+ax+b\ .}

非特異であるとは、グラフが尖点を持ったり、自分自身と交叉したりはしないということである。この形の方程式もヴァイエルシュトラス方程式あるいはヴァイエルシュトラスの標準形という。係数体の標数が 2 や 3 のとき、上の式は全ての非特異三次曲線(英語版)を表せるほど一般ではない(詳細な定義は以下を参照)。

Pが重根を持たない三次多項式として、y2 = P(x) とすると、種数 1 の非特異平面曲線を得るので、これは楕円曲線である。Pが次数 4 で無平方(英語版)とすると、これも種数 1 の平面曲線となるが、しかし、単位元を自然に選び出すことができない。さらに一般的には、単位元として働く有理点を少なくとも一つ持つような種数 1 の代数曲線を楕円曲線と呼ぶ。例えば、三次元射影空間へ埋め込まれた二つの二次曲面の交叉は楕円曲線である。

楕円関数論を使い、複素数上で定義された楕円曲線はトーラスの複素射影平面(英語版)への埋め込みに対応することを示すことができる。トーラスもアーベル群で、実はこの対応は群同型かつ位相的に同相にもなっている。したがって、位相的には複素楕円曲線はトーラスである。

楕円曲線は、数論で特に重要で、現在研究されている主要な分野の一つである。例えば、アンドリュー・ワイルズにより(リチャード・テイラーの支援を得て)証明されたフェルマーの最終定理で重要な役割を持っている(モジュラー性定理とフェルマーの最終定理への応用を参照)。また、楕円曲線は、楕円暗号(ECC) や素因数分解への応用が見つかっている。

楕円曲線は、楕円ではないことに注意すべきである。「楕円」ということばの由来については楕円積分楕円関数を参照。

このように、楕円曲線は次のように見なすことができる。
一次元のアーベル多様体

三次の平面代数曲線で、有理点を持つもの

複素数を加法群とみて、二重周期を持つ格子で割った商空間(複素数体上のみ、複素数上の楕円曲線

実数体上の楕円曲線曲線 y2 = x3 − x と y2 = x3 − x + 1 のグラフ

楕円曲線の形式的な定義には、かなり技術的で代数幾何学の背景を必要としているが、高校レベルの代数幾何を使って、楕円曲線の様子をいくらか記述することが可能である。

すなわち、実平面上、楕円曲線は次の方程式により定義される平面曲線としてあらわされる。 y 2 = x 3 + a x + b {\displaystyle y^{2}=x^{3}+ax+b}

ここに a と b は実数である。

楕円曲線の定義は、曲線が非特異であることも要求される。幾何学的には、このことは曲線のグラフが尖点を持たず、自己交叉せず、孤立点ももたないことを意味する。代数的には、非特異とは判別式 Δ = − 16 ( 4 a 3 + 27 b 2 ) {\displaystyle \Delta =-16(4a^{3}+27b^{2})}

と関係している。曲線が非特異であることと、判別式が 0 でないこととは同値である。(係数 −16 は、非特異であることと無関係に見えるが、楕円曲線の高度な研究ではこのようにしたほうが便利である。)

非特異楕円曲線の(実数の)グラフは、判別式が正であれば、二つの曲線の成分を持ち、負であれば、一つの曲線の成分しか持たない。例えば、右の図で示されているグラフでは、図中の左は判別式が 64 であり、図中の右は 判別式が −368 である。
群構造

射影平面で考えると、すべての滑らかな三次曲線上の群構造を定義することができる。射影平面上、楕円曲線がヴァイエルシュトラスの標準形 Y 2 Z + a 1 X Y Z + a 3 Y Z 2 = X 3 + a 2 X 2 Z + a 4 X Z 2 + a 6 Z 3 {\displaystyle Y^{2}Z+a_{1}XYZ+a_{3}YZ^{2}=X^{3}+a_{2}X^{2}Z+a_{4}XZ^{2}+a_{6}Z^{3}}

によりあらわされるとき、そのような三次曲線は斉次座標(英語版) [0 : 1 : 0] である無限遠点 O を持ち、群の単位元となる。

曲線は x-軸で対称であるので、任意の点 Pが与えられると、−P はその反対側の点として取ることができる。−O は O とする。

P と Q が曲線上の二点であれば、一意に第三の点 P + Q を次の方法で定義することができる。まず、P と Q を通る直線を引く。この直線は一般に第三の点 R で曲線と交わる。P + Q を R の反対の点である −R とする。

この加法の定義は、ほとんどの場合はうまく働くが、いくつかの例外がある。一つ目の例外は、加算する点の片方が O であるときである。このとき、P + O = P = O + P と定義し、O は群の単位元となる。第二の例外は、P と Q が互いに反対側の点である場合である。この場合は、P + Q = O と定義する。最後の例外は、P = Q の場合であり、このとき一点しかないため、これを通る直線を一意に定義できない。そこで、この点での曲線の接線を使う。ほとんどの場合、接線は第二の点 R で曲線と交叉するため、反対の点をとることができる。しかしながら、P がたまたま変曲点(そこで曲線の凹み方が変わるような点)であるようなときは、接線は P でしか曲線と交叉しない。そこで、R を P 自身として、P + P を単純に点の反対の点とする。

ヴァイエルシュトラス標準形ではない三次曲線に対しては、九つある変曲点のうちの一つを単位元 O とすることで群構造を定義することができる。射影平面内では、多重度を考慮にいれると、三次曲線と任意の直線は三つの点で交叉する。点 P に対し、−P は O と P を通る第三の点として一意に定義される。そして、任意の P と Q に対する P + Q は、R を P と Q を含む直線上の第三の点としたとき、P + Q = −R として定義される。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:124 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef