核融合炉
[Wikipedia|▼Menu]
マックスプランク・プラズマ物理学研究所(英語版)のWendelstein 7-X(ヴェンデルシュタイン・セブン・エックス)サンディア国立研究所Zマシン欧州トーラス共同研究施設 (Joint European Torus, JET)大型ヘリカル装置(LHD):ヘリオトロン磁場配位を用いた超伝導プラズマ閉じ込め実験装置

核融合炉(かくゆうごうろ)は、原子核融合反応を利用した、原子炉の一種。発電の手段として2024年時点では開発段階であり、21世紀前半における実用化が期待される未来技術の一つである。

重い原子であるウランプルトニウム原子核分裂反応を利用する核分裂炉に対して、軽い原子である水素ヘリウムによる核融合反応を利用してエネルギーを発生させる装置が核融合炉である。2023年現在、2025年の運転開始を目指し、日本を含む各国が協力して、核融合実験炉イーター(ITER)フランスに建設中である[1][2][3]。ITERのように、核融合技術研究の主流であるトカマク型の反応炉が、高温を利用したものであるので、特に熱核融合炉とも呼ばれることがある。

太陽をはじめとする恒星が輝きを放っているのは、全て核融合反応により発生するエネルギーによるものとされている。このため核融合炉は「人工太陽[4]」「地上の太陽」に喩えられる。太陽の場合は1600万℃・2400億気圧という高温高圧の状態で核融合反応が発生している[5]

地球上で核融合反応を発生させるためには、人工的に極めて高温か、あるいは極めて高圧の環境を作り出す必要がある。

これまでに、さまざまな炉の方式が研究されてきた。初期には、Zピンチステラレータ磁気ミラーの3つに重点が置かれていた。現在主流の方式は、トカマクレーザーによる慣性閉じ込め(ICF)である。どちらも、フランスのITERトカマクや米国の国立点火施設(NIF)レーザーを筆頭に、大規模な研究が進められている。最近は、より安価な核融合炉の実現を目指して他の方式も研究されている。それらの中で、磁化標的核融合慣性静電閉じ込め、そしてステラレータといった新しい方式への関心が高まっている。

核融合反応の過程で高速中性子をはじめ様々な高エネルギー粒子の放射が発生するため、その影響を最小限に留める必要がある。そういった安全に反応を継続する技術、プラズマの安定的なコントロールの技術、超伝導電磁石の技術、遠隔操作保守技術、リチウム重水素三重水素を扱う技術、プラズマ加熱技術、これらを支える材料や部品、支えるコンピュータ・シミュレーション技術などが必要とされ、それぞれに開発が進められている。

現在、国際共同研究のITER、中国科学院のような国家プロジェクト[4]に加えて、アメリカ合衆国カナダ日本など世界で数十の企業が核融合炉やその部品などの開発に取り組んでいる[6]
国際プロジェクト

大型核融合装置として、実験炉であるITERが建設中である。またITERを補完する幅広いアプローチ活動で建設された実験装置であるJT-60SA[7]が2023年10月23日にファーストプラズマを達成した[8]
核融合反応「原子核融合」も参照

核融合反応は、2つ以上の原子核が十分な時間近づいたときに起こり、原子核を引き寄せる核力が、原子核を引き離す静電気力を上回ったとき、より重い原子核に融合する[9]56より重い原子核の場合、反応は吸熱反応であり、エネルギーの投入を必要とする[10]。 鉄より重い原子核は陽子の数が多く、反発力が大きい。 鉄56より軽い原子核の場合、反応は発熱反応であり、融合するときにエネルギーを放出する。水素は、原子核に陽子1個だけを持つため、核融合を達成するのに必要なエネルギーは最も少なく、正味のエネルギー出力は最も大きい。また、水素は電子を1つしか持っていないため、完全にイオン化するのが最も簡単な燃料である。

原子核間の反発しようとする静電相互作用は、陽子中性子の直径であるおよそ1フェムトメートルの範囲でしか働かない強い核力[9]よりも、長い距離で働く。核融合を起こすためには、強い核力が静電気力による反発に打ち勝つのに十分な運動エネルギーを供給して、燃料原子が互いに接近する必要がある。「クーロン障壁」とは、燃料原子を十分に近づけるために必要な運動エネルギーの量のことである[9]。このエネルギーを生み出すために、原子を非常に高温に加熱したり、粒子加速器で加速したりする必要がある。

原子はイオン化エネルギーを超えて加熱されると電子を失う。その結果、原子核がむき出しになり、これをイオンと呼ぶ。この電離の結果がプラズマであり、プラズマは加熱されたイオンとそれに結合していた自由電子の雲である[11]。プラズマは電気伝導性があり、電荷が分離しているため磁気的に制御できる。この性質は、高温の粒子を閉じ込めるために、いくつかの核融合装置で使われている。

プラズマの温度を高くするために外部から加えたエネルギーと核融合反応により発生したエネルギーが等しくなる条件を「臨界プラズマ条件」と呼び[12][13]、D-T反応(重水素三重水素の反応)では「発電炉内でプラズマ温度1億以上、密度100兆個/cm3とし、さらに1秒間以上閉じ込めることが条件」と、いうことになる[14]2007年10月時点、この条件自体はJT-60及びJET(欧州トーラス共同研究施設)で到達した[14]とされているが、発電炉として使用出来るまでの持続時間等には壁は高く、炉として実用可能な自己点火条件と言われる条件[12]を目指し挑戦がつづいている。
利点

核分裂による
原子力発電と同様、温暖化ガスである二酸化炭素の排出がない[6]

核分裂反応のような連鎖反応がなく、暴走が原理的に生じない。

海水中に1/7000の割合で存在する[15]重水素を利用できる。

原子力発電で問題となる高レベル放射性廃棄物が生じない。(定期的に交換されるダイバータやブランケットといったプラズマ対向機器は高ベータ・ガンマ廃棄物と呼ばれ、高い放射能を持つことになる[16]。ただし開発が進められている低放射化材料を炉壁に利用することにより、放射性廃棄物の浅地処分やリサイクリングが可能となる。)

従来型原子炉での運転休止中の残留熱除去系のエネルギー損失や、その機能喪失時の炉心溶融リスクがない。

などが挙げられる。
欠点

超高温で超高
真空という物理的な条件により、実験段階から実用段階に至る全てが巨大施設を必要とするため、莫大な予算がかかる。

炉壁などの放射化への問題解決が求められる(後述)。

コスト

発電所の寿命を30年、割引率2%で試算すると、5.4円?7.6円/kWhと見積もられている[17]
安全性・危険性
事故の可能性


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:117 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef