核融合反応
[Wikipedia|▼Menu]

原子核物理学



放射性崩壊
核分裂反応
原子核融合

放射性崩壊
アルファ崩壊ベータ崩壊ガンマ崩壊

その他の崩壊
二重ベータ崩壊二重電子捕獲内部転換核異性体転移クラスタ崩壊自発核分裂

放出過程
中性子放出陽電子放出陽子放出

捕獲
電子捕獲陽子捕獲中性子捕獲
RSPRp

高エネルギー反応
核破砕反応宇宙線による核破砕光分解

元素合成
恒星内元素合成
ビッグバン原子核合成
宇宙の元素合成

科学者
ベクレルベーテキュリーフェルミラザフォードバーバー

.mw-parser-output .hlist ul,.mw-parser-output .hlist ol{padding-left:0}.mw-parser-output .hlist li,.mw-parser-output .hlist dd,.mw-parser-output .hlist dt{margin-right:0;display:inline-block;white-space:nowrap}.mw-parser-output .hlist dt:after,.mw-parser-output .hlist dd:after,.mw-parser-output .hlist li:after{white-space:normal}.mw-parser-output .hlist li:after,.mw-parser-output .hlist dd:after{content:" ・\a0 ";font-weight:bold}.mw-parser-output .hlist dt:after{content:": "}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" |\a0 ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" -\a0 ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:"、";font-weight:normal}.mw-parser-output .hlist-slash dd:after,.mw-parser-output .hlist-slash li:after{content:" /\a0 ";font-weight:normal}.mw-parser-output .hlist dd:last-child:after,.mw-parser-output .hlist dt:last-child:after,.mw-parser-output .hlist li:last-child:after{content:none}.mw-parser-output .hlist dd dd:first-child:before,.mw-parser-output .hlist dd dt:first-child:before,.mw-parser-output .hlist dd li:first-child:before,.mw-parser-output .hlist dt dd:first-child:before,.mw-parser-output .hlist dt dt:first-child:before,.mw-parser-output .hlist dt li:first-child:before,.mw-parser-output .hlist li dd:first-child:before,.mw-parser-output .hlist li dt:first-child:before,.mw-parser-output .hlist li li:first-child:before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child:after,.mw-parser-output .hlist dd dt:last-child:after,.mw-parser-output .hlist dd li:last-child:after,.mw-parser-output .hlist dt dd:last-child:after,.mw-parser-output .hlist dt dt:last-child:after,.mw-parser-output .hlist dt li:last-child:after,.mw-parser-output .hlist li dd:last-child:after,.mw-parser-output .hlist li dt:last-child:after,.mw-parser-output .hlist li li:last-child:after{content:")\a0 ";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li:before{content:" "counter(listitem)" ";white-space:nowrap}.mw-parser-output .hlist dd ol>li:first-child:before,.mw-parser-output .hlist dt ol>li:first-child:before,.mw-parser-output .hlist li ol>li:first-child:before{content:" ("counter(listitem)" "}.mw-parser-output .navbar{display:inline;font-size:75%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}.mw-parser-output .infobox .navbar{font-size:88%}.mw-parser-output .navbox .navbar{display:block;font-size:88%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}









核融合反応(かくゆうごうはんのう、(: nuclear fusion reaction)とは、軽い核種同士が融合してより重い核種になる核反応を言う。単に核融合と呼ばれることも多い。核分裂反応と同じく古くから研究されている。

核融合反応を連続的に発生させエネルギー源として利用する核融合炉も古くから研究されており、フィクション作品にはよく登場するが、現実には技術的な困難を伴うため2023年現在実用化はされていない[1][2]
解説「核融合エネルギー」も参照

1920年代及び30年代に、ジョン・コッククロフトに代表される粒子加速器の研究に従事していた物理学者たちは、陽子水素原子核)や他の軽い核に高いエネルギー(数keV)を与え入射粒子として加速し、標的となっている軽い核に当てると、核の電気的反発力や核力によって入射粒子は破壊を伴いながら、標的と融合し大きなエネルギーが解放されること、すなわち核融合反応(nuclear fusion)を発見していた。この大きなエネルギーは、アインシュタインによって主張された関係式 E = mc2 を満たす形で、融合した核の質量の一部がエネルギーに変換されるため発生する。しかしながら、加速器による核融合反応では、少数の核融合物を作るために大量のエネルギーが必要であり、もし実用に供するような連続的な核融合反応を起こすのであれば摂氏数億度もの高温が必要となることから、以後に発見された核分裂反応ほどには当初は着目されなかった。

上記の摂氏数億度の高温を用いる核融合は特に熱核反応(thermonuclear reaction)と呼ばれるが、熱核反応の燃料としては、原子核の荷電が小さく原子核同士が接近しやすい軽い核種で反応自体も速いといった理由から三重水素二重水素といった水素の重い同位体が理想的と言われる[3]

融合の種類によっては融合の結果放出されるエネルギー量が多いことから、水素爆弾などの大量破壊兵器に用いられる[4]。ただし、水素爆弾は核分裂反応を利用して起爆する必要がある。

また平和利用目的として核融合炉によるエネルギー利用も研究されている。核分裂反応に比べて、反応を起こすために必要な技術的なハードルが高く、世界各国において様々な実験装置が建設され、実用化に向けた研究開発が進められている。近年、スタートアップを含む民間による核融合炉の開発も活発になっている[5][6]
核融合の種類
熱核融合
超高温により起こる核融合。本項で詳説する。
衝突核融合
原子核を直接に衝突させて起こす核融合。原子核の研究において使用される。
スピン偏極核融合
陽子中性子角運動量のパラメータ(スピン)を制御する事により核融合反応を制御する。
ピクノ核融合
非常に高密度の星(白色矮星)の内部で起こっていると考えられている核融合反応。電子が原子核のクーロン力を強く遮断して、低温の状態でも零点振動による量子トンネル効果により核融合が起こる。
ミューオン触媒核融合
ミュー粒子(負ミューオン)は電子と同様にマイナスの電荷をもつ粒子だが、電子の約200倍の質量を持つので束縛軌道半径が約200分の1である。そのため、電子を負ミューオンに置き換えると原子核同士が接近しやすくなり核融合が起こりやすくなる。負ミューオンは消滅までに何度もこの反応に関与できるのであたかも触媒のように作用する。
常温核融合
室温から摂氏数百度程度の、熱核融合に比べて低い温度で核融合が起こる反応。1989年3月に米ユタ大学の研究者がこの現象を発表した。当時は再現性にばらつきがあったため科学的な議論を呼んだが、その後、ナノ金属加工技術や電子顕微鏡の発展により2010年頃から再現性が高まり、再評価されている[7]
各種核融合反応
D-T反応D-T反応の説明図詳細は「D-T反応」を参照 D + T ⟶ He 4 + n   ( 14 M e V ) {\displaystyle {\ce {D + T -> ^4He + n}}\ \mathrm {(14\,MeV)} }

核融合反応の中でもっとも反応させやすいのが、二重水素(デューテリウム、D)と三重水素(トリチウム、T)を用いた反応である。これは水素爆弾にも利用されている。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:44 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef