核磁気共鳴分光法
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。記事の信頼性向上にご協力をお願いいたします。(2016年3月)
HWB-NMR(イギリス、バーミンガム)に設置されている21.1 Tの磁石を備えた900 MHz NMR装置

核磁気共鳴分光法 (かくじききょうめいぶんこうほう、: nuclear magnetic resonance spectroscopy)は、核磁気共鳴(NMR)を用いて分子の構造や運動状態などの性質を調べる分析方法である。NMR関連の文書では水素原子核の意味でプロトンという言葉がよく使われ、本記事でも多用されている。
概要1H NMR スペクトルの例。横軸は化学シフトで表している。

原子番号質量数がともに偶数でない原子核は0でない核スピン量子数Iと磁気双極子モーメントを持ち、その原子は小さな磁石と見なすことができる。磁石に対して静磁場をかけると磁石は磁場ベクトルの周りを一定の周波数歳差運動する。原子核も同様に磁気双極子モーメントが歳差運動を行なう。この原子核の磁気双極子モーメントの歳差運動の周波数はラーモア周波数と呼ばれる。この原子核に対してラーモア周波数と同じ周波数で回転する回転磁場(電磁波)をかけると磁場と原子核の間に共鳴が起こる。この共鳴現象が核磁気共鳴と呼ばれる。

磁場中に置かれた原子核はゼーマン効果によって磁場の強度に比例する、一定のエネルギー差を持った 2I+1個のエネルギー状態をとる。このエネルギー差はちょうど周波数がラーモア周波数の光子の持つエネルギーと一致する。そのため、共鳴時において電磁波の共鳴吸収あるいは放出が起こり、これにより共鳴現象を検知することができる。

被観測原子のラーモア周波数は同位体種と外部静磁場の強さでほぼ決まるが、同一同位体種の原子核でも試料中での各原子の磁気的環境によってわずかに異なり、そこから分子構造などについての情報が得られる。ひとつのNMRスペクトルで観測される周波数範囲は比較的狭く、一種類の同位体原子だけの試料中での状態を反映したものになる。つまりNMRは同位体種に選択的な測定法である。

分光法なので得られるデータは横軸が周波数で縦軸が強度のスペクトルとなる。しかし、ある原子の共鳴周波数は外部静磁場の強さに比例して変わり、その被観測原子固有の性質とはならない。だが、

(被観測原子のラーモア周波数?基準周波数)/(磁気回転比×外部静磁場強度)

で定義される化学シフトは被観測原子固有の値となるので、NMRスペクトルの横軸は化学シフトで表すのが一般的である。共鳴位置に現れるピークのことを単にピークまたはシグナル、信号と呼ぶ。

主に対象となる原子は水素または炭素(通常の12Cではなく核スピンを有する同位体13Cを測定する)であり、これらについては膨大な資料が存在する。水素原子を対象とするものを1H NMR(プロトンNMR)、炭素原子を対象とするものを13C NMR(カーボン・サーティーンNMR)と呼ぶ。他にそれ以外の元素についても核スピンを持ちさえすれば原理的には測定可能であり、現代の有機化学では最も多用される分析手法の一つである。例として水素のラーモア周波数は 42.58 MHz/Tで、窒素のラーモア周波数は 3.09 MHz/T である[1]。12Cや16Oは核スピンを持たないので検出できない[1]。有機化合物の同定構造決定に極めて有用であり、NMRスペクトルを解釈して有機化合物の構造決定に結びつける技術や、その基礎となるNMRの原理についての多数の成書が出版されている[2][3][4][5]。また病理検査においてもその有用性が活用されつつあり、可搬式の機種が開発される[1][6][7][8]

近年では永久磁石式だけでなく、超伝導磁石式でも卓上に設置できる機種が販売されている[9]。また、単結晶X線回折と並んで構造生物学のための強力な武器である。測定する核種の磁気回転比や天然存在比、電気四極子モーメント等の違いで感度や線幅が異なる。核磁気共鳴分光法の原理については「核磁気共鳴」を参照
分光計

NMR 分光計は一定の磁場(外部磁場)をかけるマグネット、電磁波パルスの照射とシグナルの検出を行うプローブ、電磁パルスの発生や照射のタイミングなどを制御する分光計本体、データ処理のためのコンピュータで構成される。NMRを製造している(製造していた)メーカーとしては日本電子 (JEOL)、ブルカー・バイオスピンオックスフォード・インストゥルメンツバリアンなどが著名である。
マグネット

外部磁場をかけるための磁石は、永久磁石あるいは超伝導磁石が用いられる。電磁石を用いた装置は以前は作成されていたが、現在は使われていない。磁場が強力になるほど、スピン状態間のエネルギー差が大きくなり、その占有率の差が大きくなるため感度が上がる。またラーモア周波数は磁場に比例するため、接近した周波数を持つピーク同士の分解能も高くなる。そのため、非常に強力な磁場を発生させることが可能な超伝導磁石を使う装置が主流となっている。磁石の発生させている磁場の強度はその磁場におけるプロトンラーモア周波数で表現される。例えば 11.74 T の磁場を発生させる磁石は500 MHzのマグネットと称される。
永久磁石

永久磁石を用いた装置は円盤型の永久磁石を2枚平行に並べて均一な磁場を発生させる。永久磁石は横に並べるので、発生する磁場は水平方向となっている。現在目にすることが可能な永久磁石を用いた装置はほぼ60 MHz、90 MHzのものである。感度や分解能が劣るので研究目的には使用される機会は一時期廃れていたものの、近年では永久磁石の装置は装置が比較的コンパクトにまとまることやマグネット自体をメンテナンスする必要が少ないというメリット(超伝導磁石は下の項目にもあるように数か月に一回程度、液体ヘリウム、週に一回程度、液体窒素を数十リットル補充しなければならない)がある。そのため、品質保証のためのルーチン分析などの用途には現在でも使用されていて教育等の用途へ利用が拡大しつつある。永久磁石は温度により磁場が変動したりシムコイルによる磁場の調整ができないため磁場の不均一性により信号が乱れる欠点もある。この欠点を克服するため、希土類磁石を円筒状のハルバッハ配列に配置することで単1乾電池の大きさの装置で非常に一様な0.7 Tの磁場が実現でき、可搬式のNMR分光計が開発されている[10][11][12]。近年は各社から永久磁石式NMR分光計が発売される。
超伝導磁石

超伝導磁石を用いた装置はかなり大掛かりなものとなる。電磁石の本体であるコイルの線材として強磁場下でも超伝導状態を保つことができる第二種超伝導体であるニオブチタンの合金(300 MHz以下)やニオブスズの合金(800 MHz以下)が使用される。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:70 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef