有限生成加群
[Wikipedia|▼Menu]

数学において、有限生成加群(ゆうげんせいせいかぐん、: finitely generated module)とは、有限な生成集合をもつ加群のことである。有限生成 R-加群はまた有限 R-加群 (finite R-module, module of finite type) や R 上有限 (finite over R) とも呼ばれる[1]

関連した概念に、有限余生成加群 (finitely cogenerated module)、有限表示加群 (finitely presented module)、有限関係加群 (finitely related module)、連接加群 (coherent module) があり、これらはすべてあとで定義される。ネーター環上では、有限生成、有限表示、連接加群の概念は一致する。

たとえば上の有限生成加群とは単に有限次元ベクトル空間であり、有理整数環上の有限生成加群とは単に有限生成アーベル群である。
定義

左 R-加群 M が有限生成とは、M の元 a1, a2, ..., an が存在して、すべての M の元 x に対して、R の元 r1, r2, ..., rn が存在して、x = r1a1 + r2a2 + ... + rnan となることである。

この場合、集合 {a1, a2, ..., an} は M の生成集合と呼ばれる。有限個の生成元は基底である必要はない、なぜならそれらは R 上一次独立である必要はないからだ。より圏論的な特徴づけとしては次がある。M は有限生成であるのは、ある自然数 n に対して全射 R-線型写像 R n → M {\displaystyle R^{n}\to M}

が存在する(つまり M は有限ランク自由加群の剰余加群である)とき、かつそのときに限る[2]

加群 M の部分集合 S が有限生成部分加群 N を生成すれば、N の有限個の生成元は S からとってくることができる(なぜなら S の高々有限個の元しか有限個の生成元を表現するのに必要ないからである)。

任意の加群は有限生成部分加群の増大列の和集合である。

加群 M が体 R 上のベクトル空間であり生成集合が一次独立な場合には、n は well-defined で M の次元と呼ばれる(ここに言うwell-defined とは、ベクトル空間の全体を定義域とし非負整数を値域にとる次元についての写像dimを構成する際に0でないベクトル空間Vに対応する非負整数をdim(M)=n:=#{“ある”一次独立なMの生成集合}として定めている(M={0}の場合はdim(M)=0とする)訳であるが、この一次独立なMの生成集合自体が一通りとは限らず、dim(M)に与えた定義からは対応する非負整数が一意的に定まるか否かは自明な主張ではない(当然次元というものを多価関数としては想定しておらず定義の段階では矛盾孕んでいる可能性を排除し切れていない)ものの、実際に任意にとれる{“ある”一次独立なMの生成集合}の濃度はそれぞれ等しく、引数Mに対しての戻り値nが一意的に定まることから、dimが写像として矛盾なく定義されることがちゃんと確認されるという意味である。なお、このことはベクトル空間の次元定理によって明確に保証される)。


1つの元で生成される加群。(
巡回加群と呼ばれる。)

R を整域とし K をその分数体とする。このとき K のすべての有限生成 R-部分加群 I は分数イデアルである。つまり、R の0でない元 r が存在して、rI は R に含まれる。実際、r として I の生成元の分母の積をとることができる。R がネーター的ならば、すべての分数イデアルはこのように生じる。

有理整数環 Z 上の有限生成加群は有限生成アーベル群と一致する。これらはPID上の有限生成加群の構造定理によってPIDとして Z をとることで完全に分類される

可除環上の有限生成(左としよう)加群はちょうど(可除環上の)有限次元ベクトル空間である。

いくつかの事実

有限生成加群の準同型像はすべて有限生成である。有限生成加群の部分加群は一般には有限生成でない。例えば、可算個の変数をもつ多項式環 R = Z[X1, X2, ...] を考えよう。R 自身は有限生成 R-加群である({1} が生成集合)。定数項が 0 の多項式すべてからなる部分加群 K を考えよ。すべての多項式は係数が0でないような有限個の項のみからなるから、R-加群 K は有限生成でない。

一般に、加群は、すべての部分加群が有限生成であるときにネーター加群と呼ばれる。ネーター環上の有限生成加群はネーター加群である(実はこの性質がネーター環を特徴づける)。ネーター環上の加群が有限生成であるのはそれがネーター加群であるとき、かつそのときに限る。これはヒルベルトの基底定理と似ているが、同じではない。これはネーター環 R 上の多項式環 R[X] はネーター環であるというものである。いずれの事実によってもネーター環上の有限生成代数はまたネーター環である。

より一般に、代数(例えば環)は有限生成加群であれば有限生成代数(英語版)である。逆に、有限生成代数が(係数環上)整であれば、有限生成加群である。(詳細は整拡大参照。)

0 → M' → M → M'' → 0 を加群の完全列とする。このとき M', M'' が有限生成であれば M は有限生成である。この部分的な逆が成り立つ。M が有限生成で M'' が有限表示(これは有限生成よりも強い、下記参照)であれば、M' は有限生成である。また、M がネーター的(あるいはアルティン的)であることと M', M'' がネーター的(あるいはアルティン的)であることは同値である。

B を環とし A をその部分環で B は忠実平坦右 A-加群とする。このとき左 A-加群 F が有限生成(あるいは有限表示)であることと B-加群 B ⊗ A F {\displaystyle B\otimes _{A}F} が有限生成(あるいは有限表示)であることは同値である[3]
可換環上の有限生成加群

可換環 R 上の有限生成加群に対して、中山の補題は基本的である。ときどき補題によって有限生成加群に対して有限次元ベクトル空間的な減少を証明することができる。例えば、f : M → M が有限生成加群 M の全射 R-自己準同型であれば、f は単射でもありしたがって M の自己同型である[4]。このことは M はホップ加群(英語版)であると言っている。同様に、アルティン加群 M は余ホップ(英語版)である。つまり、任意の単射自己準同型 f は全射自己準同型でもある[5]

任意の R-加群は有限生成 R-部分加群の帰納極限である。これは仮定を有限的ケースに弱めるために有用である(例えば、Tor関手を用いた平坦性の特徴づけ(英語版))。

有限生成性と整な元の間の関係の例は可換代数で見つかる。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:29 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef