有限幾何学
[Wikipedia|▼Menu]

有限幾何学(ゆうげんきかがく)とは有限個のから構成される幾何学の体系である。例えばユークリッド幾何学は有限幾何学でない。ユークリッド空間における「」は無限に多くの(実際は実数と同じ濃度の)「点」を含むからである。ユークリッド幾何は任意の次元で存在することと同様に、有限幾何も任意の(有限)次元で存在する。ただし、ユークリッド幾何とは異なり、有限幾何の場合は同じ次元でも各種の異なった(幾何学的)構造が存在し得る。
概要

有限幾何は有限体上の構造と関連したベクトル空間として、線型代数を通じて定義できる。それはガロア幾何とも呼ばれる。または有限幾何は、純粋に組合せ論的に定義することもできる。

多くの場合には(しかしすべてではない)有限幾何はガロア幾何と同じものである。例えば3次元またはそれ以上の次元における任意の有限射影空間は、ある有限体上の射影空間と同型である(有限体上のベクトル空間の射影化)。

そこでこの場合は両者の違いはない。しかし2次元においては、組合せ論的に定義された射影平面で、有限体上の射影空間と同型にならないようなもの、いわゆる非デザルグ平面が存在する。そこでこの場合は両者は異なるものである。
有限平面

次の注意は有限「平面」のみに適応できる。

有限平面幾何にはアフィン平面幾何と射影平面幾何の二種類がある。アフィン幾何においては平行線は通常の意味で使われる。これに対し、射影幾何においては任意の二つの直線がただひとつの交点をもつ、すなわち平行線は存在しない。有限アフィン平面幾何と有限射影平面幾何は、どちらも簡単な公理系によって構成される。
有限アフィン平面

アフィン平面幾何は、空でない集合 X {\displaystyle X} (その要素は「点」と呼ばれる)、および、次の条件を満たすような X {\displaystyle X} の部分集合の空でない族 L {\displaystyle L} (その要素は「直線」と呼ばれる)から構成される。
2つの異なる任意の点が与えられたとき、それらを含むような直線がただ一つだけ存在する。

平行線公準 :直線 ℓ {\displaystyle \ell } と ℓ {\displaystyle \ell } 上にない一点 p {\displaystyle p} が与えられたとき、 p {\displaystyle p} を含み ℓ {\displaystyle \ell } とは交点をもたない、すなわち ℓ ∩ ℓ ′ = ∅ . {\displaystyle \ell \cap \ell '=\varnothing .} となるような直線 ℓ ′ {\displaystyle \ell '} がただ一つだけ存在する。

どの3点も同一直線にないような4点集合が存在する。

最後の公理は、この幾何が空集合でないことを保証する。最初の二つはこの幾何の特性を規定する。4点と6直線を含む位数2の有限アフィン平面の図。同じ色の「直線」は「平行」の関係にある

ただ4点のみを含むもっとも単純なアフィン平面は位数2のアフィン平面と呼ばれる。3点は同一直線上にないので、任意の点の対がただひとつの直線を定める。そしてこの平面は6直線を含む。 これは互いに交わらない辺を「平行」と見なした四面体に対応する。あるいは向かい合う2辺だけではなく2つの対角線も「平行」と見なした正方形にも対応する。

さらに一般的に、位数 n {\displaystyle n} の有限アフィン平面は n 2 {\displaystyle n^{2}} 個の点と n 2 + n {\displaystyle n^{2}+n} 本の直線を持ち、各直線は n {\displaystyle n} 個の点を含む。そして各点は n + 1 {\displaystyle n+1} 本の直線に含まれる。9点と12直線を持つ位数3の有限アフィン平面の図。同じ色の「直線」は「平行」の関係にある
有限射影平面

有限射影平面は、空でない集合 X {\displaystyle X} (その要素は「点」と呼ばれる)、および、次の条件を満たすような X {\displaystyle X} の部分集合の空でない族 L {\displaystyle L} (その要素は「直線」と呼ばれる)から構成される。
2つの異なる任意の点が与えられたとき、それらを含むような直線がただ一つだけ存在する。

2つの異なる任意の直線の交わり(集合の意味での交わり
である)はただ一つの点を含む。

どの3点も同一直線にないような4点集合が存在する。
7点と7直線を持つファノ平面の図

最初の二つの公理は、点と直線の役回りが入れ代わっていることをのぞけばほとんど同一である。これは射影平面幾何に対して、この幾何で真であるような命題は、点と直線あるいは直線と点を入れ換えても真である、という意味での双対原理を示唆する。第三の公理は、4点の存在を要求するだけだが、最初の二つの公理を満たすためには少なくとも7点が必要である。

有限射影平面のもっとも簡単な例は、7点と7直線を持ち、各点が3直線の上にあり、各直線が3点を含むようなものである。この特殊な有限射影平面は、ファノ平面とも呼ばれる。この平面から任意の一つの直線とその直線が含む点を取り除くと、位数2のアフィン平面になる。このためファノ平面は、位数2の射影平面と呼ばれる。一般的に位数nの射影平面は n 2 + n + 1 {\displaystyle n^{2}+n+1} の点および直線を持ち、各直線は n + 1 {\displaystyle n+1} 個の点を含み、各点は n + 1 {\displaystyle n+1} 本の直線に含まれる。

ファノ平面の7個の点の置換(それは全部で7!種類ある)で、同一直線上にある点の組が同一直線上に移されるようなものはをなし、この平面の対称性と呼ばれる。この位数168の対称性の群は、PSL(2,7) = PSL(3,2),および一般線形群 GL(3,2)と同型である。
平面の位数

位数 n {\displaystyle n} の有限平面とは、各直線が n {\displaystyle n} 個の点を含むもの(アフィン平面の場合)、または各直線が n + 1 {\displaystyle n+1} 個の点を含むもの(射影平面の場合)である。有限幾何における有名な未解決問題の一つとして、有限平面の位数は常に素数の冪であろうか?

という問題がある。これは真であると予想されているが、証明は得られていない。

q = p k {\displaystyle q=p^{k}} 要素を持つ有限体上の射影平面またはアフィン平面を使うことにより、 n {\displaystyle n} が素数冪の時には常に位数 n {\displaystyle n} のアフィンおよび射影平面が存在する。有限体から構成されない平面も存在するが、それらも含めすべて既知の有限平面は素数冪の位数である。

現在のところ、この問題に関するもっとも一般的な結果は、1949年のBruck?Ryserの定理である。[1]
Bruck?Ryserの定理
正整数 n {\displaystyle n} が、 4 k + 1 {\displaystyle 4k+1} または 4 k + 2 {\displaystyle 4k+2} の形であって、かつ2つの整数の平方和に等しくないならば、位数 n {\displaystyle n} の有限平面は存在しない。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:27 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef