有理点
[Wikipedia|▼Menu]

数論において有理点(ゆうりてん、: rational point)とは、各座標の値が全て有理数であるような空間の点のことである。

例えば、点 (3, −67/4) は 3 も −67/4 も有理数であるため、2次元空間内の有理点である。有理点の特別な場合として整数点(英語版)(integer point)があり、これは座標値が全て整数の点である。例えば、(1, −5, 0) は 3次元空間内の整数点である。より一般に K を任意の体とするとき、K-有理点は点の各々の座標値が体 K に属するような点と定義される。同様に、特別な場合である K-整数点は、各座標値が数体 K 内の代数的整数の元である点と定義される。
代数多様体上の有理点や K-有理点「ディオファントス幾何学(英語版) 」を参照

V を体 K 上の代数多様体とする。V がアフィン多様体、つまり V を係数が K に属する多項式方程式系 fj(x1, ..., xn) = 0, j = 1, ..., m の零点集合であるとすると、V の K-有理点 P は、体 K に属する数の順序付きの n-個の組 (x1, ..., xn) であり、同時にすべての方程式の共通解となる。一般に V の K-有理点は、V のアフィン開部分集合の K-有理点である。

V が射影空間 P n {\displaystyle \mathbb {P} ^{n}} の中の斉次多項式 f 1 , … , f m {\displaystyle f_{1},\dots ,f_{m}} (係数は K に属する)で定義される射影的な代数多様体の場合は、V の K-有理点は射影空間内の [ x 0 : ⋯ : x n ] {\displaystyle [x_{0}:\cdots :x_{n}]} の点のうち、すべての座標が K に属し、すべての方程式 f j = 0 {\displaystyle f_{j}=0} の共通解となっているものである。

混乱がない場合、あるいは体 K が有理数体の場合には、K-有理点を単に有理点と呼ぶことがある。

K-有理点と同様に、楕円曲線のような代数多様体の有理点は、現在の研究の主要な分野となっている。アーベル多様体 A に対し、K-有理点はを形成する。K が数体のとき、モーデル・ヴェイユの定理は K 上のアーベル多様体の有理点のなす群は有限生成群であると主張する。

ヴェイユ予想は、有限体上の多様体上の有理点の分布に関連していて、多様体が定義される最も小さな部分体が存在し、それへ属する点から有理点が構成されることを意味している。
例1

点 (3, −67/4) は、方程式 y + 67/4 = 2 (x − 3) で与えられる直線上の有理点の無限集合のひとつの元である。この有理点の集合は、群演算 (a, b) + (r, s) = (a + r, b + s + 91/4) と単位元 (0, −91/4) を持つ可換群を形成する。この直線上に整数点は存在しないことを示すことができる。この直線は単純なタイプの代数曲線であり、代数多様体である。有理点を有限個しかもたない、もしくは有理点をまったくもたない代数曲線(たとえば、円錐曲線 x2 + y2 + 1 = 0)も存在する。
例2

点 P = (√2, 3) は、方程式 3x2−2y = 0 により定義される代数多様体(この場合は放物線)上の点である。座標値 √2 は有理数でないので、P は有理点ではない。しかし、F を a と b を任意の有理数として a + b√2 という形の数がなす体とすると、P は F-有理点となる。これは座標値が √2 = 0 + 1√2 と 3 = 3 + 0√2 であり、数 0, 1, 3 が有理数だからである。
例3

複素射影平面(英語版)上の点 (a, b, c) は、za, zb, zc がすべて実数となるような複素数 z が存在するとき、R-有理点(通常は、実有理点と呼ぶ)である。そうでなければ、複素数の点と呼ぶ。この記述は高次元の複素射影空間へ一般化される。
スキームの有理点s

スキーム論の用語では、スキーム X の K-有理点は、まさに射 Spec K → X のことである。K-有理点の集合を通常、X(K) で表す。

k 上に定義されたスキームや多様体 X に対し、剰余体 k(x) が k に同型であれば、点 x ∈ X も有理点と呼ばれる。
関連項目

代数曲線

数論力学

双有理変換

単位円の有理点の群(英語版)

点の函手(英語版)

参考文献

Silverman, Joseph H.; Tate, John (1992). Rational Points on Elliptic Curves. Undergraduate Texts in Mathematics. Springer. .mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation.cs-ja1 q,.mw-parser-output .citation.cs-ja2 q{quotes:"「""」""『""』"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}ISBN 0-387-97825-9. https://books.google.co.jp/books?id=mAJei2-JcE4C 


記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:8546 Bytes
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef