有効場の理論
[Wikipedia|▼Menu]

場の量子論

(ファインマン・ダイアグラム)
歴史

背景
量子力学
場の理論
ゲージ理論
ヤン=ミルズ理論
自発的対称性の破れ
ポアンカレ群

対称性
荷電共役対称性
交叉対称性(英語版)
パリティ
時間反転対称性(T対称性

方法
量子異常(アノマリー)
有効場の理論
真空期待値
ファデエフ=ポポフゴースト
ファインマン・ダイアグラム
格子ゲージ理論
LSZ簡約公式
分配関数
伝播関数
量子化
繰り込み
真空状態
ウィックの定理
ワイトマンの公理系

方程式
ディラック方程式
クライン?ゴルドン方程式
プロカ方程式
ホイーラー・ドウィット方程式

標準模型
量子電磁力学
量子色力学
ワインバーグ=サラム理論
ヒッグス機構

未完成理論
量子重力理論
弦理論
超対称性
テクニカラー(英語版)
万物の理論

科学者
アドラー(英語版) ? ベーテ ? ボゴリューボフ ? カラン(英語版) ? キャンドリン(英語版) ? コールマン ? ドウィット ? ディラック ? ダイソン ? フェルミ ? ファインマン ? フィールツ(英語版) ? フレーリッヒ(英語版) ? ゲルマン ? ゴールドストーン ? グロス ? トホーフト ? ジャッキーヴ(英語版) ? クライン ? ランダウ ? 李政道 ? レーマン ? マヨラナ ? 南部 ? パリージ ? ポリャコフ ? アブドゥッサラーム ? シュウィンガー ? スキルム ? シュテュッケルベルク ? シマンチク(英語版) ? 朝永 ? フェルトマン ? ワインバーグ ? ワイスコフ ? ウィルソン ? ウィルチェック ? ウィッテン ? 楊振寧 ? 湯川 ? ジマーマン(英語版)

.mw-parser-output .hlist ul,.mw-parser-output .hlist ol{padding-left:0}.mw-parser-output .hlist li,.mw-parser-output .hlist dd,.mw-parser-output .hlist dt{margin-right:0;display:inline-block;white-space:nowrap}.mw-parser-output .hlist dt:after,.mw-parser-output .hlist dd:after,.mw-parser-output .hlist li:after{white-space:normal}.mw-parser-output .hlist li:after,.mw-parser-output .hlist dd:after{content:" ・\a0 ";font-weight:bold}.mw-parser-output .hlist dt:after{content:": "}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" |\a0 ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" -\a0 ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:"、";font-weight:normal}.mw-parser-output .hlist-slash dd:after,.mw-parser-output .hlist-slash li:after{content:" /\a0 ";font-weight:normal}.mw-parser-output .hlist dd:last-child:after,.mw-parser-output .hlist dt:last-child:after,.mw-parser-output .hlist li:last-child:after{content:none}.mw-parser-output .hlist dd dd:first-child:before,.mw-parser-output .hlist dd dt:first-child:before,.mw-parser-output .hlist dd li:first-child:before,.mw-parser-output .hlist dt dd:first-child:before,.mw-parser-output .hlist dt dt:first-child:before,.mw-parser-output .hlist dt li:first-child:before,.mw-parser-output .hlist li dd:first-child:before,.mw-parser-output .hlist li dt:first-child:before,.mw-parser-output .hlist li li:first-child:before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child:after,.mw-parser-output .hlist dd dt:last-child:after,.mw-parser-output .hlist dd li:last-child:after,.mw-parser-output .hlist dt dd:last-child:after,.mw-parser-output .hlist dt dt:last-child:after,.mw-parser-output .hlist dt li:last-child:after,.mw-parser-output .hlist li dd:last-child:after,.mw-parser-output .hlist li dt:last-child:after,.mw-parser-output .hlist li li:last-child:after{content:")\a0 ";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li:before{content:" "counter(listitem)" ";white-space:nowrap}.mw-parser-output .hlist dd ol>li:first-child:before,.mw-parser-output .hlist dt ol>li:first-child:before,.mw-parser-output .hlist li ol>li:first-child:before{content:" ("counter(listitem)" "}.mw-parser-output .navbar{display:inline;font-size:75%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}.mw-parser-output .infobox .navbar{font-size:88%}.mw-parser-output .navbox .navbar{display:block;font-size:88%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}









理論物理学、特に、場の量子論おいて、有効場の理論(ゆうこうばのりろん、: effective field theory, EFT)とは、特定のエネルギー領域において起こる物理現象を記述するために、短距離(高エネルギー)スケールの自由度を無視して長距離(低エネルギー)スケールの有効な自由度のみを扱うことで、本来の理論を近似的に再現する理論である。
解説

有効場の理論は、本来の理論の低エネルギー領域の物理現象を記述するための近似的な理論である。ここでいう「低エネルギー」とは、あるエネルギースケールΛに対して、それより低いエネルギーを指しており、理論の有効な自由度はm ≪ Λとなるような軽い質量の粒子に限定され、本来の理論に含まれるM ≫ Λとなるような重い質量の粒子は除外される。このとき、考えている系のエネルギーをEとすると、微少量E/Λによる級数展開として摂動論を構築することができる。重い自由度は理論に現れる粒子としては除外されるが、その情報はラグランジアン中の結合定数の中に含まれる。

有効場の理論のラグランジアンには、繰り込み不可能な無限個の項と無限個のパラメータが現れる。ただし、低エネルギー領域について計算する分には、これらの高次項は重い粒子の質量などの高エネルギーの逆べきによって抑制されるため、実際には低い次数の有限個の項を考えるだけで十分であり、繰り込み不可能性は問題とならない。このように、少なくとも低エネルギー領域においては、有効場の理論は妥当な近似となっている。実際、多くの有効場の理論は現在信じられている標準理論と整合性がとれており、このような成功は、低エネルギーの物理現象を見ている限りは、高エネルギースケールによる効果は実験的に観測されないことを意味している。

有効場の理論の特徴を以下にまとめる。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:26 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef