曲面_(数学)
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "曲面" 数学 ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2016年5月)
球面半径 r の中身の詰まった球体の境界(表面)を成す曲面である。

数学における曲面(きょくめん、: surface)は、平面の概念を平坦ではない(つまり曲率が必ずしも零でない)ものへ一般化するものである。これは直線に対する曲線の二次元的な対応物である。精確な定義は、それぞれの文脈および研究に用いる数学的な道具によって異なる複数のものが存在する。

数学的概念としての曲面は、日常語としての、あるいは科学コンピュータグラフィックが扱うような、曲面(または表面形状)の概念を理想化したものと理解することができるものである。本項では様々な種類の曲面を考慮したり比較したりすることがあるので、その場合にはそれらを区別できる曖昧さのない用語法を用いる必要がある。たとえば、「位相曲面」は二次元の(位相)多様体としての曲面の意味であり(曲面の項で扱う)、「(可)微分曲面」は可微分多様体となっている場合に用いる(曲面の微分幾何(英語版)の項を参照)。任意の微分曲面は位相曲面であるが、逆は言えない。

簡単のため、特に断りが無ければ「曲面」は三次元ユークリッド空間(特に、R3内の曲面の意味で用いることにする。他の空間に含まれることを仮定しない曲面は抽象曲面 (abstract surface) と呼ぶ。
導入

しばしば曲面は、その上の任意の点の座標の満足する方程式によって定義される。二変数の連続函数グラフはそのような例になっている。あるいは、三変数の函数の零点全体の成す集合もまた曲面を成し、陰伏曲面(英語版)と呼ばれる[注釈 1]。このとき、三変数の定義函数が多項式ならば、得られる曲面は代数曲面と呼ばれる。例えば、単位球面陰伏方程式 x 2 + y 2 + z 2 − 1 = 0 {\displaystyle x^{2}+y^{2}+z^{2}-1=0} によって定義することができる代数曲面である。

曲面はまた、3 以上の次元を持つ適当な空間に値をとる二変数の連続函数(曲線に退化しないことを保証する適当な条件がさらに課される)のとしても定義されうる。この場合、それら二つの変数を媒介変数として媒介付けられた曲面(英語版)であるという。例えば、単位球面は「経度」u と「緯度」v によって { x = cos ⁡ ( u ) cos ⁡ ( v ) y = sin ⁡ ( u ) cos ⁡ ( v ) z = sin ⁡ ( v ) {\displaystyle {\begin{cases}x=\cos(u)\cos(v)\\y=\sin(u)\cos(v)\\z=\sin(v)\end{cases}}} と媒介変数表示できる。

曲面の媒介方程式は、しばしばいくつかの点で「正常でない」(irregular) ことが起きる。例えば、先ほどの単位球面の媒介表示では、二点を除く全ての点において(2π の整数倍の違いを除いて)ただ一つの対 (u, v) の像である。しかし残りの二点(「北極」と「南極」)については、cos v = 0 であって、経度 u は任意の値をとることができる。また、曲面によっては、単一の媒介付けその曲面全体を辿ることができるようなものが存在しないということも起こり得る。したがって、しばしば複数の媒介方程式を使って、それらの像が曲面全体を覆えるようにする。これは多様体の概念によって曲面を定式化するものである。多様体を扱う文脈は典型的には位相幾何学微分幾何学であるが、その場合の曲面とは二次元の多様体のことである。言い換えれば、曲面とは各点がユークリッド平面(の適当な開集合)に同相近傍を持つ位相空間のことを言う。このような定式化ものとで、高次元空間内の曲面や(どのような空間に含まれるかさえ問題としない)抽象曲面なども定義することができるようになる。しかしこれらは「滑らか」な曲面しか扱わないので、円錐曲面(英語版)の頂点や自己交叉を持つ曲面の交叉点など、特異点(英語版)のある曲面は除外されてしまう。

古典幾何学での曲面は、何らかの点や線の成す軌跡として一般に定義される。例えば、球面は「中心」と呼ばれる定点から与えられた距離にある点の軌跡である。また例えば、円錐曲面(英語版)は定点を通り一つの曲線と交わる直線の軌跡になっている。あるいは回転曲面は曲線を一つの直線を軸に回転させた軌跡である。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:40 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef