普遍被覆
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。正確な表現に改訳できる方を求めています。
被覆写像 p : Y → X によって底空間 X の開集合 U は被覆空間 Y の同相な開集合 S1, S2, S3, … によって「均一に被覆」されている。

数学、特に代数トポロジーにおいて、被覆写像(covering map)あるいは被覆射影(covering projection)とは、位相空間 C から X への連続全射 p のうち、 X の各点が p により「均一に被覆される」近傍をもつものをいう。厳密な定義は追って与える。このとき C を被覆空間(covering space)、X を底空間(base space)と呼ぶ。この定義は、すべての被覆写像は局所同相であることを意味する。

被覆空間はホモトピー論調和解析リーマン幾何学微分幾何学で重要な役割を果たす。たとえば、リーマン幾何学では、分岐は、被覆写像の考え方の一般化である。また、被覆写像はホモトピー群、特に基本群の研究とも深く関係する: X が十分によい位相空間であれば、X の被覆の同値類の集合と 基本群 π1(X) の共役な部分群の類全体との間に全単射が存在する(被覆の分類定理)[1]
定義

位相空間 C から X への連続全射 p : C → X が被覆写像であるとは、すべての点 x ∈ X に対し x の開近傍 U が存在し、逆像 p−1(U) が共通部分をもたない C の開集合の和集合で表され、各開集合が p の制限写像により U と同相であることをいう[2]。このとき C を被覆空間、 X を底空間という。被覆写像や被覆空間のことを単に被覆と呼ぶこともある。

底空間の点 x における逆像 p−1(x) は x 上のファイバーと呼ばれ、離散空間となる[2]

定義中に現れる点 x の特別な開近傍 U は、均一被覆近傍[訳語疑問点]と言う。均一被覆近傍は、空間 X の開被覆となる。均一被覆近傍 U の C における同相なコピーを、U 上のシートと言う。一般に図示するときには、被覆空間 C は底空間 X 上に「浮いて」いて、 p が「下向き」に写像し、U 上のシートは、U の「真上方向に水平に積み重なって」いて、x 上のファイバーは、x の「真上」にある C の点であることが多い。特に、被覆写像は局所的には自明である。このことは局所的には、均一被覆近傍 U の逆像 p?1(U) の U × F の上への準同型 h が、各々の被覆写像が射影と同型であることを意味する。ここに F はファイバーであり、局所自明化条件、つまり、U の上への U × F から U の上への射影 π : U × F → U に対して、射影 π と準同型 h との合成は、前像 p?1(U) から U 上への写像 π ? h であり、従って、導かれた合成 π ? h は p に局所的に(p?1(U) の中では)等しい。
他の定義

被覆写像の定義では位相空間 C と X にある種の連結性を課すこともある。特に弧状連結局所弧状連結を要請することが多い[3][4]。実際、多くの定理はこれらの条件の下でしか成り立たない。被覆写像の全射性を要請しない場合もあるが、もし C が弧状連結で空でないならば全射性は他の公理から従う。
具体例

すべての位相空間は恒等写像によって自明に自分自身を被覆する。
S1 は S1 の二重被覆である。

複素平面上の単位円を S1 と書く。すると、
p(z) = znにより、写像 p : S1 → S1 は n 重被覆となる。

R {\displaystyle \mathbb {R} } は、単位円 S1 の普遍被覆である。指数写像
p(t) = exp(2πit)により、写像 p : R → S1 は被覆で、S1 の各点は無限回被覆される。

位相空間 X が普遍被覆を持つことは、連結かつ局所弧状連結かつ半局所単連結であることと同値である。


スピン群 Spin(n) は特殊直交群の二重被覆であり、n > 2 のときは普遍被覆である。従って、リー群の例外同型(英語版)(exceptional isomorphism)は、低次元のスピン群と古典リー群の間の同型を与える。


ユニタリ群 U(n) は普遍被覆 SU(n) × R を持つ。


n-次元球面 Sn は、実射影空間の二重被覆であり、n > 1 の場合は普遍被覆である。


すべての多様体は、連結であることと向き付け不能であることが同値であるような向き付け可能二重被覆を持っている。


一意化定理は、すべての単連結なリーマン面はリーマン球面、複素平面、単位円板に共形同値であるという定理である。


n 個の円のウェッジの普遍被覆は、n 個の生成子を持つ自由群のケイリーグラフ(Cayley graph)である、つまり、ベーテ格子である。


トーラスクラインの壷の二重被覆である。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:34 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef