斜交行列
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "斜交行列" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2015年3月)

数学において、斜交行列(しゃこうぎょうれつ、: symplectic matrix:シンプレクティック行列)は、2n×2n の行列 M (要素は、典型的には実数または複素数)であって、以下の条件を満たすものをいう。

tMΩM = Ω

ここで、 tM は M の転置を意味し、Ω はある固定された非特異反対称行列である。Ω は、一般的には区分行列(block matrix)

Ω = [ 0 I n − I n 0 ] {\displaystyle \Omega ={\begin{bmatrix}0&I_{n}\\-I_{n}&0\\\end{bmatrix}}}

となる様に選ぶ。ここで、In は n×n 次の単位行列である。Ω の行列式は +1 であり、逆行列は Ω−1 = −Ω で与えられる。
特徴

すべての斜交行列は可逆であり、逆行列は下式で与えられる。

M−1 = Ω−1 tMΩ

また、2 つの斜交行列の積はまた斜交行列になる。これにより、すべての斜交行列全体の集合は、の構造を持つ。この群には、多様体としての構造が自然に入り、それにより、この群は、斜交群(シンプレクティック群ともいう)と呼ばれる(実または複素)リー群になる。斜交群は、 n(2n + 1) 次元である。

定義から直ちに、斜交行列の行列式が ±1 であることがわかる。実際は、行列式は常に +1 である。これは、パフィアン: Pfaffian)と以下の恒等式を使うことにより確認できる。

Pf(tMΩM) = det(M)Pf(Ω)

tMΩM = Ω かつ Pf(Ω) ≠ 0 だから、 det(M) = 1 を得る。

Ω として標準的なものを取り、M は

M = [ A B C D ] {\displaystyle M={\begin{bmatrix}A&B\\C&D\end{bmatrix}}}

の形をした 2n×2n の行列だとする。ここに、A、B、C、D は n×n 行列である。M が斜交行列になる必要十分条件は、以下のすべてと同値である。

tAD − tCB = In
tAC = tCA
tBD = tDB

n = 1 のときは、これらの条件は単一の条件 det(M) = 1 に単純化される。つまり、2×2 行列は、行列式が 1 のときに斜交行列となる。
斜交変換

線形代数の公理的な構成では、行列は有限次元ベクトル空間の線形変換に対応する。公理的な構成で斜交行列に対応するのは、斜交ベクトル空間(シンプレクティックベクトル空間ともいう)の斜交変換(しゃこうへんかん、: symplectic transformation)である。簡単に言うと、斜交ベクトル空間は、非退化反対称二次形式 ω を備えた2n 次元のベクトル空間 V である。

このとき、斜交変換とは、ω を保存する、つまり下式を満たす線形変換 L : V → V である。

ω(Lu, Lv) = ω(u, v)

V の基底を固定すると、ω は行列 Ω により、また L は行列 M により書くことができる。L が斜交変換になる必要十分条件は、以下により M が斜交行列になることである。

tMΩM = Ω

行列 A で表現される基底の取替えにより、以下が従う。

Ω ↦ t A Ω A {\displaystyle \Omega \mapsto {}^{t}A\Omega A}
M ↦ A − 1 M A {\displaystyle M\mapsto A^{-1}MA}

A を適当に選ぶことによって、何時でも Ω を標準形式のどれにすることもできる。
行列 Ω

斜交行列は、ある固定された特異反対称行列 Ω に関して定義される。前節で記したように、Ω は非退化反対称二次形式の座標表現として考えることもできる。この様な任意の 2 つの行列は基底の変換により互いに異なるのは、線型代数の基本的結果である。

上記の Ω 標準形と異なる最も一般的な代替は、以下の区分対角形式である。

Ω = [ 0 1 − 1 0 0 ⋱ 0 0 1 − 1 0 ] {\displaystyle \Omega ={\begin{bmatrix}{\begin{matrix}0&1\\-1&0\end{matrix}}&&0\\&\ddots &\\0&&{\begin{matrix}0&1\\-1&0\end{matrix}}\end{bmatrix}}}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:11 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef