数理生物学
[Wikipedia|▼Menu]

数理理論生物学(すうりりろんせいぶつがく、mathematical and theoretical biology)とは、生物学バイオテクノロジーおよび医学にまたがる学際的な研究分野の一つである。

数理生物学(すうりせいぶつがく、mathematical biology)、または生物数学(せいぶつすうがく、biomathematics)と呼ばれることもあり、その場合は、数学的側面を強調している。また、理論生物学(理論生物学、theoretical biology)と呼ばれることもあり、その場合には、生物学的側面を強調している。少なくとも4つの主要な亜領域、生物数学モデリング(biological mathematical modeling)、複雑システムバイオロジー(relational biology/complex systems biology(CBS))、バイオインフォマティクス(bioinformatics)、および計算機数学モデリング(computational biomodeling/biocomputing)を含む。
概説

数理生物学は、生物学的過程の数学的表現、処理、モデル化を目的とし、様々な応用数学の技術と道具を活用する。生物学、医学生物学およびバイオテクノロジーの研究において、理論的な面でも実用的な面でも用いられる。

例を挙げると、細胞生物学においては、タンパク質間相互作用システムをイラスト("cartoon")で表現することがよくある。このように表現することで、容易に視覚化することができているが、研究対象のシステムを厳密に説明しているというわけではない。厳密に表現しようとするならば、正確な数学的なモデルが必要となる。システムを量的に表現することにより、システムの挙動をシミュレーションする方が適切であるかもしれないし、システムを観察のみからでは予想できない性質を予測することが可能になる可能性もある。

生物学に応用されている数学分野には次のようなものがある。微分積分学確率論統計学線形代数学抽象代数学グラフ理論組合せ論代数幾何学位相幾何学力学系微分方程式論、符号理論
重要事項

生物学への数学の応用は昔から行われてきたが、近年特に興味深い分野となっている。これには次のような理由が挙げられる。

ゲノミクス革命により、解析的な道具なしには理解するのが困難なデータが豊富な情報を持つ分野が表れてきた。

カオス理論などの近年の数学の進歩により、生物学の複雑な、非線形的な領域を数理的な手法によって扱えるようになった。

コンピュータの能力が飛躍的に向上し、以前はできなかったような計算やシミュレーションが可能となった。

動物や人間に関する(通常の"in silico"ではない)研究には、倫理的配慮の必要性、研究そのものに伴う危険、低信頼度などの困難が伴うが、"in silico"での実験にはそれらがないことから、注目度が上がっている。

研究領域

次に挙げるのは、数理生物学の研究領域のリストである。これらの例はどれも高度に複雑で非線形のメカニズムを特徴とし、このような超複雑な系の相互作用の結果を理解するためには、数学、論理学物理学/化学分子生物学計算機学のモデルを組み合わせなければ無理であると広く認識されるようになってきている。必要な知識が多岐に渡るため、数理生物学の研究は通常、複数領域の研究者の共同研究となっており、数学者、生物数学者、理論生物学者、物理学者、生物物理学者、生物化学者、生物工学者、工学者、生物学者、生理学者、研究医、医生物研究者、腫瘍学者、分子生物学者、遺伝学者、発生生物学者、動物学者、化学者、他が参画している。
計算機モデルとオートマトン理論「en:Modelling biological systems」も参照

この分野の研究は非常に多岐にわたる。例えば、生物学・医学における計算機モデル化、動脈系モデル、神経系モデル、生化学ネットワークの振動、量子オートマトン、分子生物学・遺伝学における量子計算機、のモデル化、ニューラルネットワーク(神経回路網)、遺伝的ネットワーク、抽象関係性生物学[1](対称性に着目した群論などを用いた表現)、metabolic-replication system[2]圏論の生物学・医学への応用、オートマトン理論、セル・オートマトン、テッセレーションモデル(平面充填)、完全自己複製、生物のカオスシステム、関係性生物学(relational biology)、および有機体理論(organismic theories)である。

また、生物システムのモデル化(英語版)が挙げている例を下に列挙する。

細胞のシステムバイオロジーモデル。次の異なる機構のそれぞれ、もしくは全体を包括したもの。

代謝ネットワーク

シグナル伝達

発現調節


タンパク質の折り畳み

1,2,3次元構造、創薬ターゲットなどを含む


脳神経系モデル

木の形態成長

生態系

感染症の数理

<細胞生物学・分子生物学のモデル化>

分子生物学の重要性が高まるにつれて、この分野の研究は急速に拡大してきた。

生体材料の工学(バイオメカニクス)

酵素学酵素反応速度論の理論化

のモデル化とシミュレーション

相互作用する細胞集団の動きのモデル化

瘢痕組織形成の数学的モデル化

細胞内動態の数学的モデル化

ニューロン発癌のモデル化

<生理学的システムのモデル化>

動脈疾患のモデル化

心臓のマルチスケールなモデル化

分子集合理論(molecular set theory)

分子集合理論は、Anthony Bartholomayによって導入され、それは数理生物学、特に数理医学に応用された。分子の集まりを対象として、生化学反応を集合に関する処理の枠組みで捉える理論である[3]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:27 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef