放射線障害
[Wikipedia|▼Menu]

放射線障害
概要
分類および外部参照情報
ICD-10T66
ICD-9-CM990
MedlinePlus000026
eMedicinearticle/834015
MeSHD011832
[ウィキデータで編集]

放射線障害(ほうしゃせんしょうがい、radiation effects、radiation hazards、radiation injuries)とは、生体が放射線被曝することを原因として発生する健康影響をいう[1]

放射線障害は被曝線量に応じて確率的影響(stochastic effects)と確定的影響(deterministic effects)の2つに大きく分類できる。
概要

1895年のレントゲンによる X 線の発見と共に放射線による身体への影響、放射線障害(radiation effects, radiation hazards, radiation injuries;放射線影響とも呼ばれる)が問題となった。放射線が人体に対してどのように影響をあたえるか、またどのように防げば良いかということはその歴史とともに確立及び変遷してきている。詳細は「放射線障害の歴史」を参照

放射線防護を考える際には、どのレベルで起こった放射線障害かを明確にしておく必要がある。放射線障害は、影響の出現する個体、時期、影響の程度などに着目して以下のように分類できるとされる[2][注釈 1]
被曝線量に着目した分類[注釈 2]

確率的影響(stochastic effects)
ガン、遺伝的影響。
確定的影響(deterministic effects)
ガン、遺伝的影響以外のすべての影響。
臨床医学的な分類(影響の出現する個体に着目した分類)

身体的影響(somatic effects)
被曝した本人に現れる影響(潜伏期間を基準として、さらに2つに区分される[3])。
身体的影響の潜伏期間の長さによる分類

早期影響(early effects)
被曝後に数週間以内に現れる影響。
晩発影響(late effects)
被曝後、数か月以降に現れる影響。
遺伝的影響(hereditary effects)
被曝した人の子孫に現れる影響。
放射線がもたらす生物影響の仕組み

放射線の人体への影響は、放射線と人体を構成する物質との相互作用による物理的、化学的、生物学的過程を経て引き起こされる[4]
物理的過程
放射線と人体との相互作用[注釈 3]により、人体を構成する物質の分子(または原子)が電離あるいは励起を起こしイオン化する。
化学的過程
発生したイオンは細胞中の水と反応し化学的に反応性の高いラジカル過酸化水素、イオン対などに成長する。
生物作用
発生した高い電離作用をもつラジカル[注釈 4]などが、生体細胞内のデオキシリボ核酸(DNA)の化学結合を切断したり、細胞膜や細胞質内のリボソームなどを変化させる。

なお、生体細胞への影響としては、2の化学的な過程を経由せず物理的過程から直接、生物作用を起こす場合もありこれを直接作用(direct action)と呼ぶ[注釈 5]。これに対し、化学的過程を経て生物作用を起こす場合は間接作用(indirect action)と呼ばれる。

一般に、細胞分裂の周期が短い細胞ほど、放射線の影響を受けやすい(骨髄にある造血細胞小腸内壁の上皮細胞、眼の水晶体前面の上皮細胞などがこれに当たる)。逆に細胞分裂が起こりにくい骨、筋肉、神経細胞は放射線の影響を受けにくい。これをベルゴニー・トリボンドーの法則と呼ぶ。
DNAへの影響(確率的影響の発生するメカニズム)詳細は「DNA修復」を参照

細胞内において放射線の直接作用、間接作用が発生した場合、主に問題となるのはDNA鎖の切断(二本鎖切断、単鎖切断)である[注釈 6][注釈 7]。DNAはポリヌクレオチドの二重鎖からなっているため、単鎖切断であれば酵素のはたらきによりもう一方のDNA鎖を雛形として正確な修復が可能である[6]。一方、二本鎖切断は修復不能であったり、修復誤りを起こす場合があり、細胞死や突然変異(発ガン、遺伝的影響)の原因となる[6]

修復が不可能な場合は、アポトーシスプログラム細胞死とも呼ばれる)を起こせば問題ないが、DNA鎖が損傷したまま細胞が生き残った場合、やはり身体的影響の発ガンまたは遺伝的影響のリスクとなる。

なお、がん細胞はDNA修復機能が低下しているので上記のような修復が充分に行われない[8]。この性質を利用しているのが放射線治療であり、放射線を当てると正常細胞はすぐに生存可能の範囲に修復されるのに対して腫瘍細胞は修復しきれずに細胞が死滅する[8]
被曝線量の積み上げ過程とその放射線障害との関係

被曝の影響は単純には蓄積されないことが明らかになっている[注釈 8]。放射線による生物効果は、同じ線量でも放射線の種類や線量率(単位時間当たりの線量)によって異なる。例えば、同じ積算線量 100mSv の被曝であっても、短時間に高線量率で被曝したときと、時間をかけて低線量率で被曝したときでは、放射線障害が発生した場合、低線量率で被曝した場合の方がその健康影響は軽度になると推定されている(ただし、動物実験でのみ確認されたものである[9])。これを線量率効果(dose rate effect)と呼ぶ[注釈 9][注釈 10]
被曝線量に着目した分類

ICRPによって提唱された、放射線防護の観点からの出現パターン(発症率と発症メカニズム)による分類である。

一口に被曝といっても、例えば身体の広範囲に大量の線量の放射線を短時間に受けたときと、全身に少量の線量の放射線を長期に受けたときとでは、放射線障害として現れる症状、発症のメカニズムなどは異なる。そこで設けられた分類が以下の確率的影響と確定的影響である[13]
確率的影響(stochastic effects)

主たる症状:ガン、遺伝的影響

閾線量:存在しないと仮定される(LNT仮説[注釈 11]

主に関係する他分類:臨床医学的分類:身体的影響(ガン)、遺伝的影響、発症時期的分類:晩発影響放射線(主にガンマ線)による、少数の細胞の遺伝子の損傷などを原因とする影響である。

発生メカニズムについては、#DNAへの影響(確率的影響の発生するメカニズム) 参照生体細胞であればガン(cancer)、生殖細胞であれば遺伝的影響(hereditary effects)として現れる。

確率的影響は、ひとつの体細胞あるいは生殖細胞が放射線の影響を受けた上で生存し、がん細胞あるいは受精卵となった上で増殖・出生するプロセスの成立・不成立を確率として捉えることから、その影響は確率的である。国際機関などでリスク評価の基礎情報になっている疫学データについては以下のようなものがある。

疫学調査の一覧表調査対象死亡/発症ガン発生部位ガン総数人・年(PY)
原爆被爆生存者(日本)死亡率全部位5,9362,185,335
強直性脊椎炎患者(英国)死亡率白血病36104,000
X線透視撮影患者(カナダ)死亡率乳ガン482867,541
X線透視撮影患者(英国・マサチューセッツ)死亡率乳ガン7430,932
分娩後の乳腺炎患者(米国・ニューヨーク)発症率乳ガン11545,000
頭部白癬症患者(イスラエル)発症率甲状腺ガン55712,000
胸部肥大患者(米国・ロチェスター)発症率甲状腺ガン28138,000
トロトラスト患者(西独、ポルトガル、日本、デンマーク)死亡率肝ガン--
224Ra 投与患者(ドイツ)死亡率骨肉腫--
ラジウム時計文字盤塗装工(米国)死亡率骨肉腫--

※1ガン総数は放射線被曝による過剰発生数だけではなく、自然発生数も含む。

※2人・年(PY)は、調査対象者の追跡年数の合計年数の合計を表している。これは、ガンに潜伏期間があるため、調査対象者の人数だけでなく追跡期間も考慮したもので、疫学調査の規模を示すものだと言われる[15]

ほか、多数の動物実験などにより確率的影響の影響範囲については調べられている[16][17]
確率的影響に分類される具体的障害

ガン(cancer)

遺伝的影響(hereditary effects)

確定的影響(deterministic effects)

主たる症状:皮膚の紅斑、脱毛、奇形など(ガン、遺伝的影響以外のすべての影響)

閾線量:存在する[注釈 12]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:78 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef