弾性エネルギー
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "弾性エネルギー" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2011年7月)

物理学
ウィキポータル 物理学
執筆依頼加筆依頼
物理学
ウィキプロジェクト 物理学
カテゴリ 物理学

弾性エネルギー(だんせいエネルギー、英語: elastic energy)とは、ばねゴムなどの弾性体の変形に伴うエネルギーである。位置エネルギーの一種である。
一次元の線形弾性体

フックの法則に従うばね係数 k のばねの伸びが x であるときの弾性エネルギーは U = 1 2 k x 2 {\displaystyle U={\frac {1}{2}}kx^{2}}

で与えられる。
導出

一端が壁に固定されたフックの法則に従うばね係数 k のばねに接続された物体を考える。ばねの伸びが x のとき、ばねが物体に及ぼす力は F = −kx である。ばねの伸びが Δx だけ変化するとき、ばねに接続された物体は Δx だけ移動する。ばねの伸びの変化が充分に小さい場合には、ばねが及ぼす力は殆ど変化しないとみなすことができる。このとき、ばねが物体に行う仕事は W = F Δ x = − k x Δ x {\displaystyle W=F\,\Delta x=-kx\,\Delta x}

である。一方、ばねが物体に仕事を行うとき、ばねから物体にエネルギーが移動する。ばねの他端は壁に固定されているので、外部からのエネルギーの流入はない。従って、ばねが行う仕事の分だけばねが蓄えている弾性エネルギーが減少する。弾性エネルギーを U、その変化量を ΔU とすれば W = − Δ U {\displaystyle W=-\Delta U}

である。

これら二つの式から Δ U = k x Δ x {\displaystyle \Delta U=kx\,\Delta x}

が得られる。ばねの伸びが無限小の極限 Δx → 0 で、微分係数が d U d x = k x {\displaystyle {\frac {dU}{dx}}=kx}

となる。これを積分すれば U = 1 2 k x 2 + U 0 {\displaystyle U={\frac {1}{2}}kx^{2}+U_{0}}

が導かれる。ここで U0 は積分定数であり、これは伸びが x = 0、すなわちばねが自然な長さにあるときの弾性エネルギーを意味する。通常は U0 = 0 と定める。
弾性エネルギーと応力

先のばねの例において、ばねの伸び x を弾性体の歪み ε へ、物体がばねに及ぼす力 kx を、弾性体の応力 σ へと置き換えれば、応力が偏微分係数

σ a ( ϵ ) = ∂ U ∂ ϵ a {\displaystyle \sigma _{a}(\epsilon )={\frac {\partial U}{\partial \epsilon _{a}}}}

として表され、弾性エネルギーはこの積分として

U ( ϵ ) = ∫ ∑ a σ a ( ϵ ) d ϵ a {\displaystyle U(\epsilon )=\int \sum _{a}\sigma _{a}(\epsilon )\,d\epsilon _{a}}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:13 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef