左随伴
[Wikipedia|▼Menu]

数学の特に圏論における随伴(ずいはん、: adjunction)とは、二つの関手の間の(ある種の双対的な)関係のことである(随伴関係にある関手を持つ関手もあれば、持たない関手もある)。直感的に言えば、二つの相互に関連する圏の間に認められる、弱い同値的な関係のことである。この関係を表す関手のペアを随伴関手と呼び、片方を左随伴、もう片方を右随伴と呼ぶ。随伴の概念・随伴関手のペアは数学に遍在し、最適化や効率に関する直観的概念を明らかにし、また、ある種の数学的問題の"解決法の最適化"を行う過程で見出される(代数における集合上の自由群の構成や、位相空間におけるStone??ech compactification(英語版)の構成などがその例である。

圏 C {\textstyle {\mathcal {C}}} と D {\textstyle {\mathcal {D}}} の間の随伴とは、二つの関手 F : D → C , G : C → D {\displaystyle F\colon {\mathcal {D}}\to {\mathcal {C}},\quad G\colon {\mathcal {C}}\to {\mathcal {D}}}

の対であって、圏 C {\textstyle {\mathcal {C}}} の任意の対象 X、圏 D {\textstyle {\mathcal {D}}} の任意の対象 Y に対して、集合の全単射 hom C ⁡ ( F Y , X ) ≅ hom D ⁡ ( Y , G X ) {\displaystyle \operatorname {hom} _{\mathcal {C}}(FY,X)\cong \operatorname {hom} _{\mathcal {D}}(Y,GX)}

が存在して、これが X と Y について自然となるものを言う。このとき、関手 F を左随伴函手と呼び、他方 G を右随伴函手と呼ぶ。また、「F は G の左随伴である」 (同じことだが、「G は F の右随伴である」)という関係を F ⊣ G {\displaystyle F\dashv G}

と書く。
導入.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 40px}.mw-parser-output .templatequote .templatequotecite{line-height:1.5em;text-align:left;padding-left:1.6em;margin-top:0}The slogan is “Adjoint functors arise everywhere.” —Saunders Mac Lane、(Mac Lane 1998, p. vii)

この記事のたくさんの例ではよい数学的構造の多くが随伴関手であることを少しだけ紹介する。このことは、左(右)随伴関手に関する一般的な定理、たとえば色々な定義のしかたの同値性や余極限(極限)を保存するという定理(このことは数学の全ての分野で見つかる)から、多くの役に立つ・非自明な結果を導くことが出来る。
綴り

"adjunct"と"adjunction"と"adjoint"というように、二つの異なる語根が使われる(例えば、この記事の英語版)。Oxford shorter English dictionaryによると、"adjunct"はラテン語由来であり、"adjoint"はフランス語由来である。

Mac Lane 著 Categories for the working mathematician 第4章 "Adjoints" においては、次のように使われているのが確認できる。

φ : hom C ⁡ ( F Y , X ) ≅ hom D ⁡ ( Y , G X ) {\displaystyle \varphi \colon \operatorname {hom} _{\mathcal {C}}(FY,X)\cong \operatorname {hom} _{\mathcal {D}}(Y,GX)}

The hom-set bijection φ {\displaystyle \varphi } is an "adjunction".

If f {\displaystyle f} an arrow in hom C ⁡ ( F Y , X ) {\displaystyle \operatorname {hom} _{\mathcal {C}}(FY,X)} , φ f {\displaystyle \varphi f} is the right "adjunct" of f {\displaystyle f} (p. 81).

The functor F {\displaystyle F} is left "adjoint" for G {\displaystyle G} .
動機
最適化問題の解として

随伴関手は各種の問題に決まりきった方法を使ってもっとも効率的な解を与える方法といえる。たとえば、環論の初等的な問題として、非単位的環を環に変える問題がある。もっとも効率的に行うには、'1'を追加し、環の公理で要求されている元(環の各元rに対するr+1等)を全て(そして最小限を)追加し、公理が要求する以上の関係は持たない新しい環を構成すればよい。さらに、この構成方法は本質的にはどの非単位的環についても同じやりかたになる。

曖昧にして示唆的であるが、圏論の言語によって次のように簡潔に表現できる。「構成がもっとも効率的であるとは普遍的であること、決まりきったとは関手を定めることとする。」

ここで、普遍的であるということには「始」普遍的と「終」普遍的の2つの種類があり、これらは双対であるので、片方のみについて考えるだけで十分である。

「始」の場合の普遍性とは、問題を記述できる圏Eを準備して、構成したいものがEの始対象になるようにすることである。この方法の利点は、上限を求めることと同様に、最適化(ここでは、もっとも効率的な解を見つけること)が正確な結果を与え、認識しやすいことにある。正しいEを選ぶには少しこつがいる。たとえば、単位的でない環Rがあった場合に、圏Eの対象は非単位的環の準同型 R → S であって、Sが乗法的単位元をもつものであるする。対象 R → S1 と 対象R → S2 の間の射は三角可換図式(R → S1,R → S2, S1 → S2)のうち、S1 → S2 が単位元を保存する環の準同型になっているとする。対象 R → S1 と 対象R → S2 の間に射が存在するということは、S1 は少なくとも S2 よりもより効率的な解であることを示している。すなわち、S2 は S1 よりも多くの元を持っていたり、公理にない関係を満たすことが可能である。よって、R → R* が E の始対象であるということは、始対象からはE の他のどの対象へも射が存在するということから、R* はもっとも効率的な解であることがいえる。

非単位的環を環に変えるこの方法がもっとも効率的で決まりきった方法であるということを、この方法が随伴関手を定めていると一言で表現することができる。
最適化問題の逆

次に、関手Fから始めた場合では「Fがもっとも効率的な解となる問題は存在するのか?」という(曖昧な)質問が可能である。

FがG問題のもっとも効率的な解であるということは、ある意味では正確に、GがFが解となるもっとも難しい問題であることと同値となる。[要出典]

これが随伴関手が対となって現れることの直観的な解釈であり、実際これは正しいが、普遍射を使った定義では自明ではない。随伴関手を用いた対称形の随伴の定義(FはGの左随伴であると言ってもよいし、GはFの右随伴であると言ってもよい)を使うことで、このことが明示的になるという利点がある。
形式的な定義

随伴関手の定義はさまざまな方法がある。これらの同値性は基本的な事実であるが自明ではないため非常に有用である。この記事ではいくつかの定義を与える。

普遍射を用いた定義は書くのが簡単で、随伴関手を構成したり、随伴であることを証明する場合に必要な検証項目が少ない。最適化に対する直観にもっとも近い方法である。

余単位-単位随伴を用いた定義は随伴関手であることが分かっている関手に関係する証明を書くのに便利である、なぜなら、直接操作できる公式を持つからである。

hom集合を用いた定義はもっとも対称性がわかりやすい、これが随伴という単語を使う理由である。

随伴関手は数学の全ての分野に現れる。これらの定義が持つ構造を他の定義が持つ構造に持ち上げるためには長いが明らかな証明が必要であり、このことが随伴を完全に有用なものにしている。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:96 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef