対称行列
[Wikipedia|▼Menu]

線型代数学における対称行列(たいしょうぎょうれつ、: symmetric matrix)は、自身の転置行列と一致するような正方行列を言う[1]。記号で書けば、行列 A は A = A ⊤ {\displaystyle A=A^{\top }}

を満たすとき対称であるという。任意の正方行列は対称行列と相似である[2]

定義により、対称行列の成分は主対角線に関して対称である。即ち、成分に関して行列 A = [ai j] は任意の添字 i j に関して ai j = aj i を満たす。例えば、次の 3 次正方行列 [ 1 7 3 7 4 − 5 3 − 5 6 ] {\displaystyle {\begin{bmatrix}1&7&3\\7&4&-5\\3&-5&6\end{bmatrix}}}

は対称である。任意の正方対角行列は、その非対角成分が 0 であるから、対称である。同様に、歪対称行列(tA = −A なる行列)の各対角成分は、自身と符号を変えたものと等しいから、すべて 0 でなければならない。

対称行列が実内積空間上の適当な正規直交基底に対して定める線形作用素は対称作用素(自己随伴作用素)である[3]複素内積空間の場合に対応する概念は、複素数を成分に持つエルミート行列(自身の共役転置行列と一致するような複素行列)である。故に、複素数体上の線型代数学においては、対称行列という言葉は行列が実数に成分をとる場合に限って使うことがしばしばある。対称行列は様々な応用の場面に現れ、典型的な数値線型代数ソフトウェアではこれらに特別な便宜をさいている。
性質
実対称行列の対角化

有限次元のスペクトル定理によれば、任意の実対称行列は直交行列によって対角化可能である。更に、実正方行列 A が対称であるのは D = Q T A Q {\displaystyle D=Q^{T}AQ}

が実対角行列となる実直交行列 Q が存在するとき、かつそのときに限ることが知られている[4]。従って、任意の対称行列は適当な正規直交基底に関する(同値の違いを除いて)対角行列である。言い換えれば、n 次実正方行列 A が対称となる必要十分条件は、A の固有ベクトルの全体が Rn の正規直交基底となることである。

任意の実対称行列は、複素行列と見てエルミートであり、従ってその全ての固有値は実数である(コーシー 1829)。実はこれら固有値は、その行列の対角化(上で述べた D)の成分であり、従って D は A によって(成分を並べる順番を除いて)一意に決定される。本質的に、実行列が対称であるという性質は複素行列がエルミートであるという性質に対応する。
複素対称行列のオートン高木分解

複素対称行列Aのジョルダン標準形は対角行列ではないかもしれず、それゆえAが対角化可能であるとは限らない。複素対称行列はユニタリ行列によって「対角化」される。即ち、複素対称行列 A に対しユニタリ行列 U が存在して UAUT が対角行列かつ成分が非負実数となるようにすることができる。このことは「オートン高木分解」とも呼ばれ、もとはレオン・オートン (Autonne 1915) と高木貞治 (Takagi 1925) がそれぞれ証明し、その後さまざまな数学者によって異なる証明を以って再発見された[5][6]

実際、行列 B = A? A はエルミートかつ半正定値であり、ユニタリ行列 V によって非負実数を成分とする対角行列 V? BV が得られる。従って、C = VTAV は C? C = V? BV が実行列であるような複素対称行列になる。実対称行列 X, Y を用いて C = X + iY と置けば C? C = X2 + Y2 + i(XY ? YX) となるから、XY = YX を得る。X と Y が可換ゆえ、実直交行列 W が存在して WXWT, WYWT がともに対角行列となるようにすることができる(同時対角化)。そこで U = WVT (これはユニタリ行列)と置けば、行列 UAUT は複素対角行列になる。U に左から適当な対角かつユニタリな行列を掛けることにより(これは U のユニタリ性を保存する)対角成分を非負実数にすることができる。複素対角行列は U A U T = diag ⁡ ( r 1 e i θ 1 , r 2 e i θ 2 , … , r n e i θ n ) {\displaystyle UAU^{\mathrm {T} }=\operatorname {diag} (r_{1}e^{i\theta _{1}},r_{2}e^{i\theta _{2}},\dots ,r_{n}e^{i\theta _{n}})} と表すことができ、適した行列は D = diag ⁡ ( e − i θ 1 / 2 , e − i θ 2 / 2 , … , e − i θ n / 2 ) {\displaystyle D=\operatorname {diag} (e^{-i\theta _{1}/2},e^{-i\theta _{2}/2},\dots ,e^{-i\theta _{n}/2})} で与えられる。明らかに D U A U T D = diag ⁡ ( r 1 , r 2 , … , r n ) {\displaystyle DUAU^{\mathrm {T} }D=\operatorname {diag} (r_{1},r_{2},\dots ,r_{n})} は求める行列で、よって U ′ = D U {\displaystyle U'=DU} と置きなおせばいい。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:47 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef