密度
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "密度" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2012年9月)

密度
density
量記号ρ
次元L−3 M
SI単位キログラム毎立方メートル (kg/m3)
CGS単位グラム毎立方センチメートル (g/cm3)
MTS単位トン毎立方メートル (t/m3)
FPS単位ポンド毎立方フィート (lb/ft3)
プランク単位プランク密度 (ρP)
テンプレートを表示

密度(みつど)は、一般には、対象とする何かの混み合いの程度を示す語である。ただし、科学において、単に密度といえば、単位体積あたりの質量(質量の空間微分[注 1])を指すことが多い。

広義には、ある物理量など)が、空間(3次元)あるいは上(2次元)・上(1次元)に分布していたとして、これらの空間・面・線の微小部分上に存在する当該量と、それぞれ対応する体積・面積長さに対するのことを言う[注 2](それぞれ、体積密度・面密度・線密度と呼ぶ)。微小部分は通常、単位体・単位面積・単位長さ当たりに相当する場合が多い[注 3]。勿論、4次元以上の仮想的な場合でもこの関係は成立し、密度を定義することができる。

その他の密度としては、状態密度電荷密度磁束密度電流密度数密度など様々な量(物理量)に対応する密度が存在する(あるいは定義できる)。物理量以外でも人口密度個体群密度・確率密度、などの値が様々なところで用いられている。密度効果という語もある。
密度と比重の違い

の密度の値(g/cm3で表した数値)とその比重の値はほとんど同じであることもあって、混同されやすいが、根本的に異なる概念である。

なお、密度も比重も計量法における物象の状態の量(全89量)である。ただし、密度は典型72量に含まれており、取引・証明における規制の対象になるが、比重は「確立された計量単位のない17の物象の状態の量」の一つであり、規制の対象になっていない。

表 密度と比重の違い項目密度比重
定義 質量/体積[1] 物質の質量/同一の体積を有する水の質量[2]
次元 有次元 無次元
計量単位 kg/m3、g/m3、g/L[注 4] なし
(例)純水の値 0.99997495 g/cm3[3] 1.0000(定義により)

単位体積当たりの質量
密度の単位

次式の形で定義される。 ρ = m V {\displaystyle \rho ={\frac {m}{V}}} (ρ:密度 m:質量 V:体積)

単位体積当たりの質量としての密度は国際単位系 (SI) では キログラム毎立方メートル(kg/m3)を一貫性 のある組立単位として使用する。日本の計量法では、kg/m3、g/m3 、g/L の3つが定められている[4]。以下では、( )内は、計量法で列記されていない単位によるものである。1 kg/m3 = 1000 g/m3 = 1 g/L (= 0.001 g/cm3)

例えば、の密度(標準気圧、温度3.984 °C)は、999.97495 kg/m3 = 999974.95 g/m3 = 999.97495 g/L (= 0.99997495 g/cm3)

g/cm3という単位は国際単位系 (SI)では一貫性のない単位であるが、この単位での密度は、水に対する比重とほとんど同じであって直感的に分かりやすいためによく使用される。ただし、比重無次元量であることに注意[注 5]。1 g/cm3 = 1 kg/L = 1 t/m3 = 1000 kg/m3
密度の種類

真密度:物質の真実の状態の密度。物体の表面や内部の気孔の部分を除いた物体そのものの体積で、物体の質量を割った値。

見かけ密度:物体の表面の気孔の体積は除くが、内部の気孔の体積を含めて求めた密度。

嵩密度:粉体を容器内に詰め、容器内の隙間も体積と見なして測定した密度(この場合は見かけ密度ともいう)。

タップ密度:粉体を容器に詰める際に振動させてより充填させて測定した嵩密度。

一般に 真密度 ≧ 見かけ密度 ≧ 嵩密度
いろいろな物質の密度

以下では、単位としての一貫性はないが、よく使われる[注 6] g/cm3 = 103 kg/m3 によるものを列記する[5]

オスミウム - 22.59

イリジウム - 22.56

白金 - 21.45

- 19.30

タングステン - 19.25

ウラン - 19.1

水銀 - 13.534

- 11.34

- 10.49

- 8.96

- 7.874

チタン - 4.506

アルミニウム - 2.70

ケイ素 - 2.3290

マグネシウム - 1.738

- 0.99997495(温度3.984 °Cにおける最大密度)[6]

ナトリウム - 0.968

カリウム - 0.862

リチウム - 0.534

密度の測定方法
アルキメデス法
アルキメデスの原理を利用する方法。空気中と水中での質量をそれぞれ測定し、両者から体積を求めて密度を算出する。
比重びん法
比重びんの重さ、試料をいれた比重びんの質量、さらに置換液を加えてびんを満たした時の質量、比重瓶を置換液で満たした時の質量を測定し、体積と質量を算出する。
科学上の密度概念の歴史
古代

我々はいろいろなものを手で持ち上げただけで、大抵は直接に密度を感じ取ることができる[7]。従って、密度の概念はそれが「質量÷体積」で定義されるずっと前から存在していた[8]。目の前に純金と銀に金メッキされた物を出されても、誰でも手に持って比べればどちらが純金かはすぐ分かる。それはその密度が2倍も違うからである[8][注 7]しかし、もっと微妙な差になると判定が難しくなる。アルキメデスが謎解きしたという「ヒエロン王の王冠の謎の問題」[注 8]では、アルキメデスは「重さの減少分は、物体と同体積の水の重さに等しい」という原理を発見し、同じ重さの物体の浮力の相違は「密度・比重の概念」を数量的に認識させることとなった[10]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:59 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef