失速
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "失速" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2023年1月)
風洞を使った失速時の空気の流れの可視化

失速(しっそく)あるいはストール(Stall)とは、迎え角を大きくし過ぎた際に、翼の抵抗が急増し、それに伴い翼の表面を流れていた気流が剥離し、揚力をほとんど生みだせなくなる現象である。失速になった後の状態を失速状態といい、抵抗が増えるので速度が急に落ちる。なお、失速は翼の全面積で同時に起こり始めるわけではない(#分類も参照)。
概要

翼は、迎角が小さい範囲では、翼上面の気流がコアンダ効果によって引き寄せられて翼表面に沿って流れ、翼上方の空気圧力が低下し翼下方との空気圧力差によって揚力を生じさせるが、迎角を大きくしていくと、境界層剥離と呼ばれる現象によって気流が翼の上面に沿って流れなくなる。この状態を失速といい、そのときの迎角を失速迎角という[1]。完全に失速した状態はコンプリートストールと呼ばれる事がある[2]

一般的な航空機の翼は、迎角を大きくしていくと、揚力係数と抗力係数が迎角に比例して徐々に増加していくが、揚力係数は失速迎角付近でピークになり減少に変わるのに対し、抗力係数は急増するので、揚抗比が急減する。

失速直後の揚力係数は大きいものの、抗力係数の増加により機体が減速するので揚力が減り、また翼の気流が乱れるため機体の操縦を行う事が困難で墜落に繋がりかねない危険な状態になる。

一方で、飛行速度を急減速して文字通り「速度を失う」ために抗力を大きくさせる手段として、失速状態を用いる事は有効な手法である。そのため、の中には失速の範囲の迎角も利用するものもある。航空機においてはスポイラーエアブレーキなどによって意図的に失速状態を利用する事があるが、迎角を大きくする事で失速状態に入る事はほとんど無く、様々な防止策、回復策を講じている。例外として戦闘機動においては、意図的に失速仰角をとる事がある。

失速時の姿勢回復操作は基本的にエンジン出力を上げてスピードアップし、機首を下げて主翼の迎角を小さくするというものである。そのため失速すると機首が下がるような飛行機設計の方がより安全である。航空機は離着陸時に大きな迎角をとるため、失速が発生しやすいうえ高度も低い為に対処が間に合わず墜落に至る可能性も高い。現代では失速迎角に達する前にパイロットに警告を発する失速警報装置が搭載されている機種がある。

帆船の帆はいささか条件が異なる。航空機にとっては抗力は推進力を阻害する働きをするが、帆船で風下方向に進行する場合は逆に抗力を推進力として利用する。そのため失速状態にある事は、抗力を増大させるという意味で、好ましい条件である。重量のある船体は下部にあるため、気流の乱れによる安定性低下も問題にならない(風が非常に強力であれば、転覆の危険も生じる)。ただし風上方向に帆走する場合においては、航空機と同じく抗力は推進力の阻害要因であり、揚力を利用して帆走するので、失速しない状態が好ましい。縦帆のような揚抗比の大きな帆は風上方向への帆走能力に優れるが、風上方向へ直進する場合は帆が失速状態に陥り(風に逆らうので抗力が大きく)効率が良いとはいえない。そのため効率よく風上方向に進行するには、間切り走りといわれる、左右ジグザグ方向への帆走が用いられる。

一般的なも帆船と同様に抗力を利用するため、失速状態にある。ただし1960年代の米国ではロガロ翼を採用し、揚力を利用する凧が開発され、70年代にはゲイラカイトの商品名で日本でも発売された。従来の凧が大きく迎角を持つのに対し、ロガロ翼を持った凧は迎角が小さく、失速状態を利用しないので、効率がよく、凧揚げがやりやすい事で知られる。

パラシュート有人宇宙船大気圏突入時姿勢もいわば失速状態にあるが、減速を利用しているのでこれを失速と表現する事はまずない。

上記から転じて、勢いが急激に失われたり、急激に活力が低下する意味で失速が使われており、陸上競技モータースポーツ等、速度が関係するスポーツでも使われている。
失速の過程

翼の失速特性やレイノルズ数にもよるが、概ね次のような過程を経る。
迎角を大きくしていくと、流速や迎角の大きな一部の領域で小規模な境界層剥離が発生する

剥離と再付着が交互に起こる、バフェットと呼ばれる現象が起こるこれによって翼が振動するため、パイロットは失速しつつあることを知ることができる。

迎角がさらに大きくなると剥離領域が拡大し、失速する失速から回復するには、翼の迎角を失速角よりかなり小さくしなければならない。

迎角をさらに大きくしていくと揚力係数は再び増加する抗力係数は非常に大きく揚抗比も悪い。


分類
後縁失速
翼後縁から徐々に剥離を起こしていく。そのため急激な揚力係数の減少は生じにくく、失速特性から見た場合もっとも使用するにはよいタイプといえる。ただし、後縁から始まった剥離が急激に拡大し揚力係数が激減する翼形もある。
前縁失速
翼前縁付近で剥離を起こし、その後流れは翼に再び付着することがないため急激な揚力係数の減少をもたらすことが多い。
薄翼失速
前縁失速と同じように前縁直後で剥離を起こすが、剥離した流れはその後再び翼に付着するため、剥離の段階で若干の揚力係数の変化があるものの、その後は再び迎角に従い揚力係数が増加していく。さらに迎角を大きくしていくと、流れの再付着点が後縁まで達し、後縁失速と同じ状態となる。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:21 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef