増幅回路
[Wikipedia|▼Menu]

増幅回路(ぞうふくかいろ)とは、増幅機能を持った電子回路であり、電源から電力を供給され、入力信号により能動素子の動作を制御して電源電力を基に入力信号より大きなエネルギーの出力信号を得るものである[1]。信号のエネルギーを増幅する目的のほか、増幅作用を利用する発振回路演算回路などの構成要素でもある。電気的(電子的)なものの他に、磁気増幅器光増幅器などもあるが、この記事では以下電子回路のみについて説明する。

前述のようにエネルギーを大きくした信号を取り出すものを指すので、トランスのみによって電圧(あるいは電流)を大きくするような場合は、一般に電力(=電圧×電流)としては大きくはならないので含まれない。また例えば、素子の特性から[注釈 1]、アンプの内部では中間段で信号の電圧振幅を大きくしてから、出力段でスピーカー等を駆動するために必要な電流を伴わせた、電力を持った信号とする、というような構成になるが、そのような場合の前者を電圧増幅、後者を電力増幅などということもある。

なお、普通増幅回路といえばアナログな(殊にリニア的な)ものを指すが、拡張的に考えれば、スイッチング回路は最も単純な増幅回路であり、例えば電圧がしきい値より低いか高いかということのみを増幅する事に特化している。電子工学以前の電磁機械動作の時代からある増幅回路(→リレー)でもあり、リレーにより信号を中継することを「アンプする」という語があるが、この記事では以下、アナログ的なものを扱う。
概要

バイポーラトランジスタでは入力電流の小さな変化が、電界効果トランジスタ(FET)真空管では入力電圧の小さな変化が、出力電流の大きな変化を生むという特性がある。それにより信号の電力を増大するのが電力増幅である。電力負荷を駆動する信号の電圧を増加させる場合は電圧増幅と呼び、電流を増加させる場合は電流増幅と呼ぶ。トランスは電圧・電流を変換するが信号の電力は増大しないので電力増幅にはならない。電力増幅では信号のエネルギーが増大するが、それは増幅素子自身が信号の電気エネルギーを生み出しているのではなくて、弱い入力信号のエネルギーを用いて外部の電源から供給される電気エネルギーの流れを制御することにより大きな出力信号を作り出している。

入出力の要求仕様次第で、一段で必要な増幅が得られる場合もあるが、そうでない場合もある。一般に、特に入力段は入力インピーダンス、出力段は出力インピーダンスを相手側に合わせる必要があるから、単段で両方を満たす設計というのは少ない自由度で多くの制限を同時に満たさねばならず難しくなる。多段構成では、まず電圧増幅や電流増幅を行って、最終段の電力増幅段で出力を取り出す[2]。最終段をファイナルや電力段、電力段を駆動する段をドライバ段などとも呼ぶ。[注釈 2]
諸元

増幅回路の諸元としては、まず増幅率が挙げられる。増幅度と呼ばれることもある。いずれも(出力)÷(入力)の値として定義される。増幅率には次のようなものがある。

電力増幅率

電圧増幅率

電流増幅率

増幅回路であれば電力増幅率は1より大きくなるが、電圧、電流については1より小さくなることがある。これは、入力インピーダンスと出力インピーダンスが異なるためである。また、増幅率は大きければよいと言うものではなく、必要な増幅率は設計により一意に決まるのが普通である。増幅率は直接「何倍」といったように表現(真数)するほか、対数デシベル[dB])で表現することも多い。利得とも呼ばれる。デシベル表現であれば、増幅回路を何段も重ねて接続した場合のトータルの利得が各段の利得の総和として表せることから扱いに便利である(足し算なので設計者が頭の中で簡単に計算できる)。また、真数では桁数が多くなる場合でもデシベルだと殆どの場合2桁以下で表せる。例えばトータルの電力増幅率が100000倍の場合、ゼロの数を間違えないように数えなければならないが、デシベルだと50dBとなりわかりやすい。ただし、デシベルで平均を取ることは出来ないので、その場合は一旦真数に戻してから平均を取る必要がある。

その他、増幅回路の諸元として、入力インピーダンス、出力インピーダンス、周波数特性(f特)、効率(消費電力と出力電力の比)、歪率NF、P1dB、IP3(en:Third-order intercept point)がある。
接地方式

真空管トランジスタFETを増幅回路に用いる場合、3本の電極を入力、出力、共通線(接地)にどのように振り分けるかによって、増幅回路の特性が大きく異なる。トランジスタでは、接地する電極を基準としてエミッタ接地回路(Common emitter)、コレクタ接地回路(Common collector)、ベース接地回路(Common base)の3種類がある(真空管はエミッタ・コレクタ・ベースをそれぞれカソード・プレート・グリッド、FETはソース・ドレイン・ゲートに読み替える)。それぞれの回路は次表のような特徴がある。

トランジスタ増幅回路の接地方式接地方式電圧増幅率電流増幅率周波数特性入力インピーダンス出力インピーダンス
エミッタ接地高--悪--高
コレクタ接地1倍高良--低
ベース接地中--良--高

注:設計次第である項目については -- とした

接地方式別概略回路図エミッタ接地回路コレクタ接地回路ベース接地回路


バイアス方式「バイアス (電子工学)」も参照

0V0Aから正負対称にリニアに増幅動作してくれる素子があれば理想的だが、真空管トランジスタもそのようには動作しない。そこで入力を常に一定の電圧で偏らせたり一定の出力電流に調整したりすることをバイアスをかけるという。

バイポーラトランジスタの場合入力が0Vではオフの状態で、バイアス電圧をかけ、シリコンでは約0.6Vを越えると(品種によって少し違い、温度による特性もある(約2mV/度))電流が流れ始める。この特性をノーマリーオフという。真空管の場合入力が0Vでも出力電流は流れるという特性がありノーマリーオンという。真空管は通常そこから電流が流れなくなる側にバイアスをかけて使用し、電流がほぼ完全に流れなくなるバイアス電圧をピンチオフ電圧という。真空管ではそのようにバイアスを大きくかけることを「バイアスが深い」と表現する。

バイポーラトランジスタと真空管でバイアスの大きさと意味が逆になるので、それぞれについての記述を読み替える時は注意が必要である。電界効果トランジスタでは種類により真空管と同様のタイプとバイポーラトランジスタと同様のタイプがあり、また個体差による電圧のばらつきも大きい。

完全にオフの領域のバイアスについては入力にかける電圧で、出力電流が少し以上流れる領域のバイアスについてはバイアスによる出力の電流で考えることが多い(トランジスタの特性など出力の電流に依るものが多い)。

バイアスのかけかたには以下のような方式がある。エミッタ接地で説明する。
固定バイアス固定バイアス

固定バイアスは、常に一定のバイアス電圧か、ほぼ一定のバイアス電流を入力にかける方法である。電圧をかけるには例に示した左の回路図のようになるが、このようにするのは0.1Vより細かい精度で電源電圧の調整が必要な上、入力信号の基準電圧を底上げする必要もありふつうあまり実用的でない(トランス結合であればそうでもないが)。また熱特性の影響をもろに受ける。

実用的には右のようにするが、入力インピーダンスがバイアス抵抗の値にまで下がってしまう、コンデンサによりハイパスフィルタが構成されるという副作用がある。バイアス抵抗の値は次のようにして決める。

まず、無信号時のコレクタ電流をたとえば1mAと決める。次に、トランジスタの電流増幅率hFEがたとえば100であれば、そこからベース電流は0.01mA(10μA)となる。ベースの電位は約0.6Vになるので、電源電圧をvとすると、オームの法則により、バイアス抵抗の値は (v - 0.6) / 0.00001[Ω]となる。

実際に作る際は入手可能な抵抗の値から選ぶ必要があり、設計では負荷抵抗(回路図右の出力-電源間の抵抗)の値の決定も必要であるが割愛する。正確な設計には、結構バラつきの大きい個々のトランジスタのhFEに依存する点が問題である。バイアス抵抗の値が大きめになることから、ベースのバイアス電流が増えるとバイアス抵抗での電圧降下が大きくなってベースの電位が下がる、という特性があるため、Vbeの変動に対しては比較的安定である(Vbeの0.6Vを無視できると近似できるほど電源電圧が高い場合には、電源電圧とバイアス抵抗による簡易定電流源と見ることができ、電流でバイアスを掛けていると解せる)。
自己バイアス自己バイアス

自己バイアスは出力からフィードバックをかける形のバイアス方式である。反転増幅回路なので負帰還である。設計は以下のようにする。

エミッタ接地回路では、電源電圧を負荷抵抗RLとトランジスタのコレクタ-エミッタ間電圧(Vce)で分圧して出力電圧を取り出すわけだが、無信号時のRLによる電圧降下が電源電圧の1/2から2/3程度になるようにするのが相場である[3]。詳細は教科書等で確認のこと。ここでは2/3と決めたとする。すると無信号時のコレクタの電位は電源電圧をv[V]とするとv/3[V]となり、ベースとの電位差はv/3 - 0.6[V]となる。コレクタ電流を1mAとするとベース電流は0.001 / hFE[A]であるので、オームの法則により、バイアス抵抗は (v/3 - 0.6) / (0.001 / hFE)、整理して (v/3 - 0.6) * hFE / 0.001[Ω]となる。

フィードバックは以下のようにして働く。コレクタ電流が増えたとすると、コレクタの電位は低下する。するとバイアス抵抗にかかる電圧が低下し、ベース電流が減り、コレクタ電流が減る。
電流帰還バイアス電流帰還バイアス

電流帰還バイアスは、エミッタ接地の場合はエミッタに抵抗が入る(エミッタ抵抗、emitter degeneration resistorなどとも言う)ことが特徴である。負帰還の特性があり、温度安定性が高い、増幅率が抵抗の比で決定される、hFEのバラつきにかかわらず設計できる、などの利点がある。

負帰還の作用は以下の連鎖通りである。
コレクタ電流が増える

エミッタ電流が増える

エミッタ抵抗の電圧が上がる

エミッタの電位が上がる

(ベース電位が一定であれば)ベース-エミッタ間電圧が下がる

ベース電流が減る

コレクタ電流が減る

電圧増幅率は、ほぼ RL/Re になる。

実際の設計では制約条件によりさまざまだが、以下に抵抗値の決定の一例を示す。
シリコンバイポーラトランジスタの Vbeは1℃あたり約2mV変動する。アイドル時のコレクタ電流を1mAとし、温度変動50℃でコレクタ電流の変動を10%以内に収めるには、Reは1kΩとなる。

増幅率を10倍とすると、RLは10kΩとなる。

コレクタ電流が1mA、Reが1kΩなので、エミッタ電圧は1.0Vとなる。Vbeを0.6Vとして、ベース電圧が1.6Vになるよう、R1とR2で電源電圧を分圧する。安定した動作のためには、ベース電流(=コレクタ電流÷hFE)の数倍以上の電流がR1とR2を流れるようにする。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:50 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef