場の古典論
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。正確な表現に改訳できる方を求めています。

場の古典論(ばのこてんろん)、もしくは古典場の理論 (classical field theory) は、(物理的な)がどのように物質と相互作用するかについて研究する理論物理学の領域である。古典的という単語は、量子力学と協調する場の量子論(単に、場の理論とも言われる)と対比して使われる。

物理的な場は各々の空間時間の点に物理量を対応させたとして考えることができる。例えば、天気図を考えると、ある国の一日を通じての風速は、空間の各々の点にベクトルを対応させることにより記述できる。各々のベクトルは、その点での大気の運動の方向を表現する。日が進むにつれて、ベクトルの指す方向はこの方向に応じて変化する。数学的な観点からは、古典場はファイバーバンドル(共変古典場理論(英語版)(covariant classical field theory))の切断として記述される。古典場理論という用語は、電磁気重力という自然界の基本的力のうちの 2つを記述する物理理論に共通に使われる。

物理的な場の記述は、相対論の発見の前に行われており、相対論に照らして修正された。従って、古典場の理論は通常、非相対論的と相対論的なカテゴリ分けがなされる。
非相対論的場の理論

単純な物理的な場として、いくつかのベクトル力の場がある。歴史的には、初期に重要視された場は、電場を記述するマイケル・ファラデー(Michael Faraday)により電気力線が記述されたことであった。その後、重力場も同様な記述がなされた。
ニュートン重力

重力を記述する古典場の理論は、ニュートン重力であり、2つの質量の間の互いの相互作用としての重力を記述する。

任意の質量を持つ剛体 M は、他の質量を持つ剛体への影響を記述する重力場 g も持っている。空間内の r にある点での M の重力は、r に置かれた小さなテスト質量(test mass)へ及ぼす力 F を m で割ることで決まる g ( r ) = F ( r ) m {\displaystyle \mathbf {g} (\mathbf {r} )={\frac {\mathbf {F} (\mathbf {r} )}{m}}}

である[1]。m は M よりはるかに小さいとすると、m の存在は M の振る舞いへの影響を無視できることが保証される。

ニュートンの万有引力の法則に従うと、F(r) は、 F ( r ) = − G M m r 2 r ^ , {\displaystyle \mathbf {F} (\mathbf {r} )=-{\frac {GMm}{r^{2}}}{\hat {\mathbf {r} }},}

により与えられる[1]。ここに r ^ {\displaystyle {\hat {\mathbf {r} }}} は M から m への線に沿って m から M を指す方向の単位ベクトルとする。従って、M の重力場は、 g ( r ) = F ( r ) m = − G M r 2 r ^ {\displaystyle \mathbf {g} (\mathbf {r} )={\frac {\mathbf {F} (\mathbf {r} )}{m}}=-{\frac {GM}{r^{2}}}{\hat {\mathbf {r} }}}

となる[1]

慣性質量と重力質量は前例のないレベルの正確さで等価であるという実験的観察は、重力場の強さと粒子に及ごす加速度による影響を同一視することへと導く。このことが等価原理の出発点であり、一般相対論が導かれる。

重力の力 F は保存量(英語版)(conservative)[note 1] であるので、重力場 g は、 g ( r ) = − ∇ Φ ( r ) {\displaystyle \mathbf {g} (\mathbf {r} )=-\nabla \Phi (\mathbf {r} )}

として、重力ポテンシャル Φ(r) の勾配の項により書き表わすことができる。
電磁気学
静電場詳細は「静電場」を参照

電荷 q で帯電したテスト粒子(英語版)(charged test particle)は、電荷だけでちから F を持つ。このことを電場 E と書くことができ、F = qE となる。このクーロンの法則を使い、単独の帯電した粒子による電場を E = 1 4 π ϵ 0 q r 2 r ^ . {\displaystyle \mathbf {E} ={\frac {1}{4\pi \epsilon _{0}}}{\frac {q}{r^{2}}}{\hat {\mathbf {r} }}.}

と表すことができる。電場は保存量の場(英語版)(conservative field)であるので、スカラーポテンシャル V(r) により、 E ( r ) = − ∇ V ( r ) {\displaystyle \mathbf {E} (\mathbf {r} )=-\nabla V(\mathbf {r} )}

と書くことができる。
静磁場詳細は「静磁場」を参照

経路 ? に沿って流れる固定したカレント I は、上記の電場の力とは異なる量の力を近くの帯電した粒子に及ぼす。速度 v で運動する電荷 q を持つ近くの帯電粒子に I の及ぼす力は、 F ( r ) = q v × B ( r ) , {\displaystyle \mathbf {F} (\mathbf {r} )=q\mathbf {v} \times \mathbf {B} (\mathbf {r} ),}

である。ここに B(r) は磁場であり、ビオ・サバールの法則 B ( r ) = μ 0 I 4 π ∫ d ℓ × d r ^ r 2 . {\displaystyle \mathbf {B} (\mathbf {r} )={\frac {\mu _{0}I}{4\pi }}\int {\frac {d{\boldsymbol {\ell }}\times d{\hat {\mathbf {r} }}}{r^{2}}}.}

により I より決定される。磁場は一般には保存量の場ではないので、スカラーポテンシャルで書き表すことが普通はできない。しかしながら、磁場のベクトルポテンシャル(英語版)(magnetic vector potential) A(r)を使い、 B ( r ) = ∇ × A ( r ) {\displaystyle \mathbf {B} (\mathbf {r} )={\boldsymbol {\nabla }}\times \mathbf {A} (\mathbf {r} )}

と書き表すことができる。
電磁気学詳細は「電磁気学」を参照

一般に、電荷密度 ρ(r, t) とカレント密度 J(r, t) の双方が存在すると、電場と磁場の双方が発生し、両方とも時間とともに変化する。これらを決定するのが、E と B を ρ と J とへ直接関係づける一連の微分方程式(系)であるマクスウェルの方程式である[note 2][2]

代わりに、スカラーポテンシャル V とベクトルポテンシャル A でこの系を記述することもできる。遅延ポテンシャルとして知られる一連の積分方程式(系)は、V と A を ρ と J から算出することができる[note 3]、このことから、電場と磁場が関係式 E = − ∇ V − ∂ A ∂ t {\displaystyle \mathbf {E} =-{\boldsymbol {\nabla }}V-{\frac {\partial \mathbf {A} }{\partial t}}} B = ∇ × A {\displaystyle \mathbf {B} ={\boldsymbol {\nabla }}\times \mathbf {A} }


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:45 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef