地滑り
[Wikipedia|▼Menu]

地すべり(じすべり、英語:landslide)とは、土砂の移動形態の一つで斜面上で発生する代表的な土砂災害の一つである。後述のように地すべりの定義は人や地域によって若干異なるが、比較的傾斜の緩い斜面において地下水の作用により、地中に形成されるすべり面を境に上部の土塊(移動体、移動ブロックなどとも呼ばれる)が比較的ゆっくりとずり落ちるように原形を保ったまま斜面下方に向けて移動する(浮力によって上部の塊と下部の塊が分離し地下水に浮いていると表現されることもある)現象を指すことが多い。

地すべりの別名を「山津波」ということもあるが、人によっては土石流のことを山津波と言うこともあり混同されやすい。地すべりと土石流はどちらも水の作用で大量の土砂が動く現象という点では同じだが、地すべりが地下水で動くのに対し、土石流は渓流の水で土砂が動く点で現象としては明確に異なるものである。ある程度の勾配を持つ傾斜地における地すべりは移動速度が速く、狭義の土砂崩れ(山崩れ、斜面崩壊とも)との区別は曖昧である。これを崩壊性の地すべりもしくは地すべり性の土砂崩壊などと呼んで狭義の土砂崩れと区別する研究者もおり、従来土砂崩れとされてきた現場でも急傾斜地の地すべり性のものがあると考えられている。
定義

地すべりには分野や研究者によって様々な定義があるが[1]、一般的に地すべりは、斜面を形成する地塊(土砂・岩塊)が、地下の地層中に円弧状または平面状に形成される地質的不連続面、すなわち「すべり面」を境にして、すべり面上の地塊がゆっくりと移動する現象である。地質学で用いられる斜面変動の分類はD.J.ヴァーンズによる分類が基礎となっている[2]。B.W.ピプキンとD.D.トレントによる斜面変動の分類では、移動速度の速いすべり現象(Slide)のうち、岩石の場合を岩すべり(Block glide)、粗粒土の場合を岩屑すべり(Debris slide)、細粒土の場合を地すべり(Earth slide)に分類している[2]

日本地すべり等防止法では「地すべり」は「土地の一部が地下水等に起因してすべる現象又はこれに伴って移動する現象」と定義されている(地すべり等防止法2条1項)。

英語の Landslide は重力によって斜面や岩などが下方に移動する現象を表す包括的な用語として使われることが多く、がけ崩れ土石流なども含まれる。日本語の地すべりも英語のように使用される場合もある[3](広義の地すべり:→ 土砂災害)。

漢字で表記する際に「地滑り」や「地辿り」と書かれる場合があるが、本来の用字は「地辷り」である。「辷」が常用漢字ではないため、日本地すべり学会では「地すべり」と表記している。法令上は「地すべり」と表記している場合(地すべり等防止法)と「地滑り」と表記している場合(土砂災害警戒区域等における土砂災害防止対策の推進に関する法律)とがある。また、災害対策基本法のように1つの法令に「地すべり」「地滑り」両表記が(意味上の使い分けなく)使われる場合もある。
地すべりの発生条件

急傾斜の斜面における土砂崩れは様々な場所で起こりうる災害であるが、緩斜面が動く地すべりはすべての斜面で起こるわけではなく、いくつか条件がある。
すべり面

すべり面は、地中に二次元的、三次元的に形成される。主に粘土鉱物を含んだ第三紀層の堆積岩や、火山活動(熱水温泉水の影響)などによる粘土化を受けた、強度の低い堆積岩内や粘土層で生じるケースが多い。すべり面は、固さの異なる地層の境目などに形成されやすく、特に地層面が流れ盤状に傾斜した状況下で、風化して脆くなった地層にすべり面が形成されたり、固い地盤の上に堆積した柔らかい粘土質の地盤が、その境目をすべり面として移動するケースが多い。多くの場合、すべり面となる不連続面では恒常的に地下水が浸透して劣化が進んでおり、地下水によって地塊に働く浮力と相まって地塊の重さに耐えきれずせん断破壊することにより地すべりが発生する。すべり面はせん断破壊を伴う地塊の移動現象であり、そういう意味では断層のメカニズムに類似した一面もある。なお、すべり面の厚さは一般に数mm程度の厚さしかない。すべり面の部分をサンプルとして採取すると、せん断破壊によって形成された、光沢のあるきれいな平面が観察されることが良くある。この状態を「鏡肌」と称している。

すべり面の形状や分布状況を調査・特定することは、対策工事の計画には不可欠な作業である。地表面に現れた亀裂や隆起・陥没の状況を「現地踏査」によって観察し、まずは大まかな平面形状を推測する。そして、その中心線を基準に数カ所でボーリング調査を行い、ボーリングによって得られたサンプル(ボーリングコア)をよく観察して、各地点ですべり面の深さを判定する。動きの遅い地すべりの場合は、ボーリング調査後の孔に歪み計を埋設し、数ヶ月間、歪みの蓄積状況を観測する場合がある。観測結果を解析することにより、歪みの大きな深度にすべり面があると推測する。これらの作業により、すべり面の形状を三次元的に捉えることが可能となり、その他の調査方法も併用して地すべりの移動速度などを知ることが可能となる。すべり面の深度は、地すべりの規模にもよるが数m?数10m程度であることが多い。

ボーリングマシーン

地すべり面の判定に使うボーリングコア。すべり面の判定は知識と経験が要求される。

地すべり地形

地すべりは跡地は地形や樹木の樹形などに特徴があり、現在活動期ではないものでも、移動した土塊の大きさや移動した方向などはある程度推定できる。現地踏査のほか慣れた人では地形図等高線の形を見ただけでも情報を得ることができる。地すべりは同じ斜面が活動と停滞の反復を繰り返しながら安定な形へと崩壊していくことが多く、地すべり地形を判読することは地域の防災や対策工事を考えるうえで大切である。以下に地すべり地形主な特徴を示す。

地すべりではすべり面より上部の土塊が地山からずり落ちていくことから、ずり落ちた部分には地山内部が露出している。この部分は一般に崖状の急斜面になることが多く、滑落崖と呼ばれる。露出した崖の部分はすべり面の一部である。下のほうにはすべった土塊(移動体)が残っておりすべり面は見えなくなる。土塊は下に行くにつれて上から押されて圧縮されたようになり、下方や側方には孕みだすような見た目になる。また、土塊が残っている部分では勾配は地山よりも緩やかになる(斜面に平坦地を作るときに切土と盛土を行うようなイメージになる)。現地踏査では滑落崖とその下方に広がる緩斜面、および土塊下方や側方での孕みだしの存在などを確認して判断する。地形図判読では等高線の間隔が周囲と比べて不自然に広い(=緩斜面)場所や、側方下方への孕みだしが読み取れるような場所から判断していく。

画面左から右へ移動する地すべり土塊。左端に土砂むき出しの崖、土塊中央に多数の亀裂、右端は左から圧縮されたようになっているのがわかる、(2018年ペルー

崩壊地斜面上部に急斜面の滑落崖が見える(インドネシア

傾斜が緩い所と急なところが交互に並び、下部は圧縮されたようになる(2014年アメリカ)

地すべり滑落崖の上に発生した亀裂(イギリス)

地すべりの模式図



地下水

地下水量の増加がすべりの原因となることが多い。典型的な例は大雨や春先の融雪である。変わったところではダムへの貯水が原因の場合がある。

ダムへの貯水が一因となり大規模な地すべりが発生したバイオントダムイタリア

日本の地すべり多発地帯とも重なる緑色凝灰岩(Green Tuff)の分布域

地震
土塊の重量バランス

すべり面上部の土塊は停止しているときに絶妙な重量バランスで移動(すべり)が停止している場合がある。このような潜在的な地すべり斜面であるとは知らずに、道路工事やダムの工事によって斜面下部での掘削を行うと土塊が再度動き出してしまうということがある。後述のように、逆に地すべりの動きを止めるときにも土塊の重量バランスをとってやる方法がある。
地すべりによる被害

地すべり(プエルトリコ

コンピュータシミュレーション

地すべり(2006年フィリピン

地すべりで寸断された道路(アメリカ)

長野県神城断層地震により生じた地すべり(長野県)

地すべりによる地割れ

シスル(アメリカ)の地すべりとそれによる天然ダム(1983年)。

地すべりの対策
ハード対策

ボーリング調査やすべり面の推定などの結果を踏まえて行われる。地表水の速やかな排水と地下水排水の促進による地下水量のコントロール、およびすべり面を貫くアンカーによる上下の土塊の固定、土塊の塊の重量バランスを調整して移動を抑える土工などが行われる。施設の完成後にさらに地下水位の変動や歪みなどを数か月から一年程度観測し、すべりが止まったかどうか追加施工が必要かどうかを判断する。
地下水量のコントロール

地表水を速やかに地すべり斜面から排水するためにコンクリートなどの不透過性の材料を用いて水路工が施工されることが多い。水路工によって地表水を排水してしまうことですべり面での地下水の増加を抑える。斜面の広範囲を不透過性にしたい時にはU字溝などではなく布製型枠にコンクリートやモルタルを流し込んだものを使うことも多い。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:33 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef