圭_(数学)
[Wikipedia|▼Menu]
.mw-parser-output .sidebar{width:auto;float:right;clear:right;margin:0.5em 0 1em 1em;background:#f8f9fa;border:1px solid #aaa;padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:75%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:720px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}

代数的構造
に似た構造



半群 / モノイド



準群とループ


アーベル群

マグマ

リー群
群論
に似た構造



半環

近環(英語版)

可換環

整域



可除環

リー環
環論
に似た構造



半束

可補束

全順序

ハイティング代数

ブール代数


en:Map of lattices

束論

加群に似た構造

加群

作用を持つ群

ベクトル空間


線形代数

代数に似た構造

代数


結合

非結合

合成代数


リー代数

次数付き

双代数

ホップ代数

.mw-parser-output .hlist ul,.mw-parser-output .hlist ol{padding-left:0}.mw-parser-output .hlist li,.mw-parser-output .hlist dd,.mw-parser-output .hlist dt{margin-right:0;display:inline-block;white-space:nowrap}.mw-parser-output .hlist dt:after,.mw-parser-output .hlist dd:after,.mw-parser-output .hlist li:after{white-space:normal}.mw-parser-output .hlist li:after,.mw-parser-output .hlist dd:after{content:" ・\a0 ";font-weight:bold}.mw-parser-output .hlist dt:after{content:": "}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" |\a0 ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" -\a0 ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:"、";font-weight:normal}.mw-parser-output .hlist-slash dd:after,.mw-parser-output .hlist-slash li:after{content:" /\a0 ";font-weight:normal}.mw-parser-output .hlist dd:last-child:after,.mw-parser-output .hlist dt:last-child:after,.mw-parser-output .hlist li:last-child:after{content:none}.mw-parser-output .hlist dd dd:first-child:before,.mw-parser-output .hlist dd dt:first-child:before,.mw-parser-output .hlist dd li:first-child:before,.mw-parser-output .hlist dt dd:first-child:before,.mw-parser-output .hlist dt dt:first-child:before,.mw-parser-output .hlist dt li:first-child:before,.mw-parser-output .hlist li dd:first-child:before,.mw-parser-output .hlist li dt:first-child:before,.mw-parser-output .hlist li li:first-child:before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child:after,.mw-parser-output .hlist dd dt:last-child:after,.mw-parser-output .hlist dd li:last-child:after,.mw-parser-output .hlist dt dd:last-child:after,.mw-parser-output .hlist dt dt:last-child:after,.mw-parser-output .hlist dt li:last-child:after,.mw-parser-output .hlist li dd:last-child:after,.mw-parser-output .hlist li dt:last-child:after,.mw-parser-output .hlist li li:last-child:after{content:")\a0 ";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li:before{content:" "counter(listitem)" ";white-space:nowrap}.mw-parser-output .hlist dd ol>li:first-child:before,.mw-parser-output .hlist dt ol>li:first-child:before,.mw-parser-output .hlist li ol>li:first-child:before{content:" ("counter(listitem)" "}.mw-parser-output .navbar{display:inline;font-size:75%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}.mw-parser-output .infobox .navbar{font-size:88%}.mw-parser-output .navbox .navbar{display:block;font-size:88%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}









数学における圭(けい)、分配亜群(ぶんぱいあぐん、дистрибутивныи Группоид; distributive groupoid, quandle; カンドル)および残滓(ざんし、rack; ラック)は、結び目の局所変形であるライデマイスター移動を図式操作と考えたときに抽出される公理と類似の公理を満たす二項演算を備えた集合である。

主に結び目理論を背景として研究されるものであるが、抽象代数学的な構造としては、自身の右からの作用を備えた代数系であると見なすことができる。
歴史

1942年、満洲国の高崎光久が対称変換の代数として圭というものを考案した。一方、1959年、当時はまだケンブリッジ大学の大学生であったジョン・コンウェイとゲーヴィン・レイドの文通で、ラックに関する最初の研究がなされている。在学中、レイドは当初彼自身は sequential と呼んだこの構造に興味を持つようになった。コンウェイは、の積構造を無視して共役構造だけを考えたものであることから、群の残滓という意味と、彼の仲間の名前をかけて wrack と改名した。現在では rack という綴りで一般に広まっている。

これらの構造が再び表面化するのは1980年代になってからのことで、1982年にデーヴィド・ジョイスの論文で術語 quandle が用いられ、同じく1982年のセルゲイ・ヴラジーミロヴィチ・マトヴェーエフの論文では дистрибутивные группоиды(ラテン文字転写: distributivnye gruppoidy, 英: distributive groupoids)の名称で、そして1986年のエグベルト・ブリースコルンの会議録では automorphic set と呼称されているが同じものが取り扱われている。

圭は、a, b, c が集合 K から任意に選んだ元である限り常に
反射律: a ⋆ a = a . {\displaystyle a\star a=a.}

対合性: ( a ⋆ b ) ⋆ b = a . {\displaystyle (a\star b)\star b=a.}

右分配律: ( a ⋆ b ) ⋆ c = ( a ⋆ c ) ⋆ ( b ⋆ c ) . {\displaystyle (a\star b)\star c=(a\star c)\star (b\star c).}

なる条件を全て満たす二項演算 ⋆ {\displaystyle \star } つきの代数系 K として定義される。

ここでの演算 " ⋆ {\displaystyle \star } " はここに挙げた3条件のみを満足することのみを要請され、この要請を満たす演算を持つ集合を一般に圭と呼ぶのである。記法としては代数学における乗法的な演算記法の約束に従っているけれども、結合律を満足するなどの通常の「乗法」に期待される性質が、この代数系を考える際には(あってもなくても)問題にされないという意味で、圭演算 ⋆ {\displaystyle \star } は通常の乗法を意味していない。

なお " a ⋆ b {\displaystyle a\star b} " という式を、b が a に右から作用しているものと考えると便利である。そのように見るとき、2番目の条件は圭 K の任意の元による K 自身への右作用が二度行うと恒等変換となる、すなわち対合を与えることを意味していることになる。また、3番目の条件は右作用が ⋆ {\displaystyle \star } に関して(マグマとしての)準同型性を示すことを意味しており、対合は全単射となるから、特に K はこの作用を通して K 上の対合的自己同型 (involutive automorphism) からなる特定の集合と同一視されることがわかる。
カンドル

カンドル Q は、任意の元 a, b, c に対して
反射律: a ⋆ a = a . {\displaystyle a\star a=a.}

右可逆性: ∃ ! x ∈ Q : x ⋆ a = b . {\displaystyle \exists !x\in \mathrm {Q} \colon x\star a=b.}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:22 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef