圧縮比
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

データ圧縮の圧縮比については「データ圧縮比」をご覧ください。

圧縮比(あっしゅくひ、: Compression Ratio、CR)とは、内燃機関および外燃機関の内燃室(ないねんしつ)において、最も容積が大きくなる時の容量と、最も容積が小さくなる時の容量の比率を表す値であり、一般的な熱機関の基本的な仕様となる値でもある。
概要

レシプロエンジンにおいては、内燃室はシリンダーピストン燃焼室で構成される。ピストンがシリンダー内部で上下動する時、ピストン下死点の時に内燃室容積は最大となり、ピストン上死点の時に内燃室容積は最小となる。この比率がそのエンジンの圧縮比である。[1]

例えばシリンダーが900 cc、燃焼室が100 ccの容積を持ち、なおかつ平坦なピストントップのピストンを用いていて、ピストンが下死点にある時に内燃室全体が1000 ccの容積を持つ単気筒エンジンを例[2]に取ると、ピストンが上死点に達するとシリンダー内の容積は1000 ccから燃焼室そのものの容積である100 ccまで圧縮される。この時、内燃室の最大:最小容量比は 1000 : 100 となり、圧縮比として表すと 10 : 1 となる。

エンジンがより高い熱効率を発揮して、同じ量の混合気からより大きな運動エネルギーを取り出すためには、圧縮比は高い方が理想的である。圧縮比が高ければ高いほど、排気量と投入燃料量が同じでもピストンを押し下げる圧力が大きくなるためである。一般的に、同じ系列のエンジンでも高い圧縮比のエンジンは低い圧縮比のエンジンより高出力・高トルクである場合が多い。

しかし、高い圧縮比を持つガソリンエンジンは、品質の悪い燃料を使用した場合にノッキングを起こしやすくなる。これが余りにも酷くなるとプレイグニッションデトネーションといった異常燃焼に発展し、最終的にはピストン溶損などのエンジンブローに至ってしまう。これを防ぐためにはハイオクガソリンを用いるか、点火時期を通常よりも遅らせることが必要になる。1970年代後半に電子制御式燃料噴射装置が登場すると、エンジンにはノッキングを検出して自動的に点火時期を遅らせるためにノックセンサーが多くの車両で用いられるようになり、アメリカでは1996年にOBD2準拠のECUの搭載と同時にノックセンサーの搭載も義務付けられるようになった。

点火時期を遅らせるということは、それだけ混合気の膨張エネルギーのロスも大きくなるため、馬力やトルクの低下に繋がる。そのため、ガソリンエンジンにおいては極端に高すぎる圧縮比は点火時期設定の制約が大きくなり、却って性能低下に繋がるという事態になる。

その一方で、圧縮点火機関であるディーゼルエンジンは、圧縮力によって燃料を自然発火させる構造上、ガソリンエンジンでいうノッキングを意図的に起こすことで点火するため、ガソリンエンジンよりも高い圧縮比を設定することが可能となる。故に、高圧縮比に耐えるエンジンにせざるを得ないと言うコスト面でのハンデはあるものの、ディーゼルエンジンの方がガソリンエンジンよりも熱効率に優れるという結論ともなる。
定義式

圧縮比は以下のような式で求められる。 CR = π 4 b 2 s + V c V c {\displaystyle {\mbox{CR}}={\frac {{\tfrac {\pi }{4}}b^{2}s+V_{c}}{V_{c}}}} b = シリンダーのボア(直径)s = ピストンストローク長Vc = ピストンが上死点に達した時の内燃室の最小容積。この数値は燃焼室容積とは必ずしもイコールになるとは限らないため、ピストンと燃焼室が複雑な形状をしていることが目視で明らかな場合や、フルノーマルエンジンでも出来るだけ正確な現状の容積を求めたい場合には、ピストンとシリンダーヘッドシリンダーブロックに組み付けた上で圧縮上死点を出し、プラグホールから灯油などの液体を注入して、燃焼室満杯まで注入できた量を直接測定して算出することが望ましい。
エンジン形式別の代表的な圧縮比
ガソリンエンジン(自然吸気仕様)

通常、複雑で高度な電子制御機構を持たないごく普通の自然吸気ガソリンエンジンの場合には、デトネーションを防ぐために圧縮比が 10:1 よりも高い数値となることは少ない。アメリカにおいては1955年から1972年にかけて、一部の超高性能エンジンを搭載した市販特別仕様車では 13:1 などの極めて高い圧縮比を持つものも現れたが、安全のために高濃度のテトラエチル鉛を大量に添加した専用有鉛ハイオクガソリンを使用することが絶対条件であった。ジャガーは1981年に 14:1 というガソリンエンジンでは限界に近い高圧縮比のエンジンを登場させたが、ほどなく 12.5:1 まで圧縮比を落としている。

ノッキングの開始を防ぐのに使用されるエンジン制御としては、吸気ポートが混合気を燃焼室に供給する際に何らかの機構を用いてスワール(横渦流)やタンブル(縦渦流)を意図的に発生させることが挙げられる。また、噴射された燃料がシリンダー内で気化熱を吸収することで温度を下げる直噴を、ノッキング対策として採用する例も増加している。近年の高度に電子制御された可変バルブ機構やノックセンサーを含めた点火時期制御が行われているエンジンでは、87オクタンレギュラーガソリンでも 11:1 を超える高い圧縮比の実現が可能となっている。

このような高度な技術が使われているエンジンの中には、2005年式BMW・K1200Sのように 13:1 という高圧縮比を持つものも存在する。近年ではマツダが、2010年にSKYACTIV-Gという名称で圧縮比 14:1 のエンジンを発表し、2011年以降複数モデルの市販車に搭載している。2019年には次世代SKYACTIVとして圧縮比15.0:1(欧州仕様は16.3:1)のSKYACTIV-Xが発表され、MAZDA3に搭載された。

ただし近年増えているミラーサイクルエンジンの類では高膨張比を目的に見かけ上の圧縮比を高めており、諸元上の圧縮比の数値に較べて有効圧縮比がかなり低い。このため諸元上で圧縮比を比較する場合は注意を要する。
ガソリンエンジン(過給機仕様)

ターボチャージャースーパーチャージャーを搭載したエンジンでは、圧縮比は 9:1 以下とされることが一般的である。この場合、自然吸気仕様エンジンとシリンダーヘッドを共用するものにおいては、ピストンヘッドに大きなへこみを設けることで圧縮比を下げることが多い[3]

1980年代のターボエンジンでは 7:1 等の低い圧縮比を持つものも珍しくはなかった。このようなエンジンは総じて大きめのターボチャージャーに0.5 - 1.0 kgf/cm2 程度の高めの最大過給圧が設定されており、いわゆるドッカンターボと呼ばれるフィーリングを持っていたが、近年のターボエンジンでは 9:1 前後の圧縮比で非過給領域の効率を上げ、小さめのターボチャージャーで0.3 - 0.5 kgf/cm2 程度の最大過給圧としてレスポンスの低下を抑えるマイルドチャージと呼ばれるセッティングが主流となっている。

近年のダウンサイジングエンジンでは直噴と過給器の組み合わせがセオリーとなっている。直噴により圧縮比をあげられるため圧縮比は 10:1 前後のものも出てきている。
ガソリンエンジン(レース仕様)

ワークス・チームなどで用いられるレース用オートバイやF1等に搭載される、純然たるレース専用エンジンにおいては、14:1 以上という極めて高い圧縮比が用いられることも珍しくはない。使用されるガソリンもレース専用の超高オクタンのスペシャルガソリンを用いることが前提とされる。

プライベーター向けに市販されるレース用オートバイでは、86 - 90オクタン前後のガソリンが使用されることも考慮して、12:1 前後の圧縮比とされることが一般的である。

なお、インディカーチャンプカーのように燃料にメタノールエタノールを用いるエンジンでは圧縮比が 15:1 に達する。

ターボ時代のF1では、当時最高峰の性能を誇っていたホンダ製V6ターボエンジンでも1983年のRA163Eで 9.4:1 、1985年から1986年に掛けて使用されたRA167Eでも 7.4:1 から 8.4:1 前後であった。しかしこの様な圧縮比であっても過給圧は4バール(約4 kgf/cm2)を超え、最高出力は600馬力から1500馬力以上。使用されるガソリンにはノッキングを防ぐために大量のトルエンが添加されているという途方もない代物であり、市販車両のターボエンジンとは比較対象にならないものであった。
LPG/CNGエンジン


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:45 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef