回転_(数学)
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

この項目では、幾何学について説明しています。ベクトル解析については「回転 (ベクトル解析)」をご覧ください。
平面における点 O の周りでの回転

初等幾何学および線型代数学における回転(かいてん、: rotation)は、平面あるいは空間において固定された一点の周りでの剛体の運動を記述する。回転は、不動点を持たない平行移動とは違うし、剛体を「裏返し」にしてしまう鏡映とも異なる。回転を含めたこれらの変換は等距変換、即ちこれらの変換の前後で二点間の距離を変えない。

回転を考える際には基準系を知ることが重要であり、全ての回転はある特定の基準系に対するものとして記述される。一般に、ある座標系に関する剛体の任意の直交変換に対し、その逆変換が存在して、それを基準系に施すと剛体はもとと同じ座標にいることになる。例えば二次元の座標上の1点を定めて剛体を置いた時、1点を軸として剛体を時計回りに回すことと、剛体を動かさず1点を軸として座標を反時計回りに回すことは等価である。
関連概念・用語

回転群は特定の一点の周りの回転全体の成すリー群 SO(n) を言う。この(共通の)不動点を回転の中心と呼び、普通はこれを原点と同一視する。回転群は(向きを保つ)運動(英語版)の成すより大きい群の一点固定部分群である。

一つの回転に関して:

回転(の)軸(英語版) (axis of rotation) とは、その回転の不動点全体の成す直線を言う。これは次元 n > 2 においてのみ存在する。

回転の面(英語版) (plane of rotation) とは、その回転の群作用の下で安定(不変)な平面(すなわち、回転不変面)を言う。回転軸と異なり、この平面上の各点それ自身はその回転の不動点でない。回転軸が存在するならば、回転軸と回転不変面とは互いに直交する(軸直交回転面)。

二次元詳細は「U(1)」を参照平面上で、ある点の周りでの回転に続けて別な点の周りでの回転を行えば、全体としての運動は(図にあるように)回転となるか、さもなくば平行移動となる。ある軸に対する鏡映に続けて最初の軸と平行でない別な軸に対する鏡映を行った結果は、両軸の交点を中心とする回転運動を与える。

二次元における回転を特定するには、回転角と呼ばれる角度を一つ決めさえすればよい。回転を記述するために、行列複素数を利用することができる。何れの場合も、回転は原点を中心に反時計回りに角 θ だけ物体を回すものとして作用する。
線型代数

行列を用いて回転を記述するには、回転させられる点 (x, y) をベクトルとして書いて、角 θ の回転を与えるように計算された行列を掛け合わせることによって [ x ′ y ′ ] = [ cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ] [ x y ] {\displaystyle {\begin{bmatrix}x'\\y'\end{bmatrix}}={\begin{bmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \end{bmatrix}}{\begin{bmatrix}x\\y\end{bmatrix}}}

なる記述を得る。ここで (x′, y′) は回転後の点の座標であり、この等式を書き下せば、x′ および y′ に関する式 x ′ = x cos ⁡ θ − y sin ⁡ θ y ′ = x sin ⁡ θ + y cos ⁡ θ {\displaystyle {\begin{aligned}x'&=x\cos \theta -y\sin \theta \\y'&=x\sin \theta +y\cos \theta \end{aligned}}}

を得ることができる。二つのベクトル [ x y ] , [ x ′ y ′ ] {\displaystyle {\begin{bmatrix}x\\y\end{bmatrix}},\quad {\begin{bmatrix}x'\\y'\end{bmatrix}}}

は同じ大きさを持ち、予期された通りの角 θ を成す。
複素数

点を複素数を使って回転させることもできる。複素数全体の成す集合は幾何学的には二次元の平面を成し、複素平面と呼ばれる。平面上の点 (x, y) は複素数 z = x + i y {\displaystyle z=x+iy}

で表現され、これを角 θ だけ回転させるには eiθ を掛ける。その積をオイラーの公式を使って展開すれば e i θ z = ( cos ⁡ θ + i sin ⁡ θ ) ( x + i y ) = ( x cos ⁡ θ + i y cos ⁡ θ + i x sin ⁡ θ − y sin ⁡ θ ) = ( x cos ⁡ θ − y sin ⁡ θ ) + i ( x sin ⁡ θ + y cos ⁡ θ ) = x ′ + i y ′ {\displaystyle {\begin{aligned}e^{i\theta }z&=(\cos \theta +i\sin \theta )(x+iy)\\&=(x\cos \theta +iy\cos \theta +ix\sin \theta -y\sin \theta )\\&=(x\cos \theta -y\sin \theta )+i(x\sin \theta +y\cos \theta )\\&=x'+iy'\end{aligned}}}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:30 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef