商加群
[Wikipedia|▼Menu]

抽象代数学において、加群部分加群が与えられると、それらの剰余加群、商加群 (quotient module) を構成することができる[1][2]。この構成は、以下で書かれるが、整数を整数 n を法としてを得る方法の類似である。合同式を見よ。剰余群剰余環に用いられるのと同じ構成である。

環 R 上の加群 A と A の部分加群 B が与えられると、商空間 A/B は次の同値関係によって定義される。A の任意の元 a と b に対してa ~ b b − a は B の元。

A/B の元は同値類 [a] = { a + b : b ∈ B } である。

A/B の加法の演算 は2つの同値類に対してこれらの類の2つの代表元の和の同値類として定義される。R の元による積についても同様である。このようにして A/B はそれ自身 R 上の加群となり、商加群 や 剰余加群 (quotient module) と呼ばれる。記号で書けば、すべての a, b ∈ A と r ∈ R に対して [a] + [b] = [a+b], r・[a] = [r・a] である。

実数の環 R と R-加群 A = R[X]、実係数の多項式環を考えよう。A の部分加群B = (X2 + 1) R[X]

つまり、X2+1 で割り切れるすべての多項式からなる部分加群を考えよう。この加群によって決定される同値関係はP(X) ~ Q(X) ⇔ P(X) と Q(X) は X2 + 1 で割ったときに余りが同じになる

であることが従う。それゆえ、剰余加群 A/B において、X2 + 1 は 0 と同じである。なので A/B を R[X] から X2 + 1 = 0 とすることによって得られると考えることができる。この剰余加群は複素数全体と、R上の加群として同型である。
関連項目

商群

参考文献^ Dummit, David S.; Foote, Richard M. (2004). Abstract Algebra (3rd ed.). John Wiley & Sons. .mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation.cs-ja1 q,.mw-parser-output .citation.cs-ja2 q{quotes:"「""」""『""』"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}ISBN 0-471-43334-9 
^ Lang, Serge (2002). Algebra. Graduate Texts in Mathematics. Springer. ISBN 0-387-95385-X 


記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:5285 Bytes
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef