吊り掛け駆動方式
[Wikipedia|▼Menu]

吊り掛け駆動方式(つりかけくどうほうしき、釣り掛け駆動方式とも称す)は、電車電気機関車などの電気車において、モーターから輪軸に動力を伝達する(モーターを台車に装架する)方式の一種。

釣掛式[1]、吊りかけ式[2]、つりかけ式支持装置[3]などとも表記する。日本産業規格(JIS)による英語表記は「nose suspension drive」とされる[3]

日本では、電車の駆動方式としてはカルダン駆動方式に取って代わられ、現存例は多くない。手法としては単純で、既に古典的な方式であるものの、電車であってもナローゲージ路面電車の大半にはまだ多くで採用されており、また大型の主電動機を装備する電気機関車や電気式ディーゼル機関車の駆動方式としては21世紀現在でも広く使われている[2]
基本構成ノーズ・サスペンション方式の吊り掛け駆動方式を上から見たモデル図。
A主電動機、B主電動機から伸びるノーズ(台車枠の横梁に防振ゴムを介して支持する)、C輪軸、D大歯車、E小歯車、G台車枠ノーズ・サスペンション方式の吊り掛けモーターの例(営団1800形電車地下鉄博物館))路面電車用バー・サスペンション方式の吊り掛けモーターの例(都電4000形のD11形台車・江戸東京博物館).mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9;display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}.mw-parser-output .listen .side-box-text{line-height:1.1em}.mw-parser-output .listen-plain{border:none;background:transparent}.mw-parser-output .listen-embedded{width:100%;margin:0;border-width:1px 0 0 0;background:transparent}.mw-parser-output .listen-header{padding:2px}.mw-parser-output .listen-embedded .listen-header{padding:2px 0}.mw-parser-output .listen-file-header{padding:4px 0}.mw-parser-output .listen .description{padding-top:2px}.mw-parser-output .listen .mw-tmh-player{max-width:100%}@media(max-width:719px){.mw-parser-output .listen{clear:both}}@media(min-width:720px){.mw-parser-output .listen:not(.listen-noimage){width:320px}.mw-parser-output .listen-left{overflow:visible;float:left}.mw-parser-output .listen-center{float:none;margin-left:auto;margin-right:auto}}吊り掛け駆動音の一例(三岐鉄道三岐線601系 伊勢治田?東藤原)それぞれの車両の音は台車や製造時期などの条件で多少異なる。この音声や映像がうまく視聴できない場合は、Help:音声・動画の再生をご覧ください。

モーターは車軸と平行に配置され、モーター軸の小歯車(平ギア)から車軸の大歯車を駆動する[2]。このとき揺動する台車の中で、どのようにモーターを配置すれば、双方のギアの噛み合わせが変わらないで済むかという問題があるが、モーター自体を、輪軸を中心とする円周上で動くように、すなわちモーター軸と輪軸の距離を一定にするように設置するのが、本方式のポイントである。

モーター本体の輪軸側の部分は、アクスルメタルと呼ばれる金属(平軸受に相当)または転がり軸受を介して輪軸に取付け、モーター本体の輪軸と反対側の部分は、ノーズまたはバーが設けられており、台車枠の横梁に支持する形で取付けられる。モーターは輪軸との位置関係がアクスルメタルまたは転がり軸受により円周上を動くだけなので、相対的な距離は一定であり、モーターの小歯車と輪軸の大歯車は常時噛合いの状態になる。台車枠の横梁部分の取り付け支持方式には、ノーズ・サスペンション方式とバー・サスペンション方式の2種類がある。

ノーズ・サスペンション方式とは、モーターの片端に設けられた突起(ノーズ)を台車枠の横梁に固定する方式である。台車枠とノーズの間にはばねや防振ゴムを挟み、輪軸の偏倚に対応する。大型の鉄道車両に多く用いられている。

バー・サスペンション方式はモーターの片端に棒状の部品(バー)を付け、このバーを台車枠の横梁に固定する方式である。台車枠とバーの間にはばねを挟む。軸距の短い台車の場合に有利である。主に路面電車、軽便鉄道で多く用いられたほか、江ノ島電鉄、箱根登山鉄道(現・小田急箱根)など比較的小型な車両を使う鉄道で使用されたが、大型電車では少数派である[注釈 1]

どちらの方式でも、モーターは輪軸と台車枠の間に橋渡しされた状態、すなわち輪軸と台車枠に吊り掛けられたかたちになる。「吊り掛け」の呼称は、ここから来ている。
長所・短所
長所

上記の通り、モーターが輪軸に直接吊り掛けられている構造となっているため、振動が発生しても、モーターの駆動軸が輪軸を中心とする円上を移動するのみで、輪軸の歯車とモーターの歯車の距離が変化することがない。

構造が簡単で、分解・組立もしやすい
[2]

製造コストが安い。

大型モーターにも対応しやすい。

最小限の構成であるため、スペースに制限のある狭軌鉄道でも使用しやすい。

短所

モーター重量の約半分が、台車の軸ばねを介さずに、アクスルメタルまたは転がり軸受を介して輪軸に直接かかるため、
ばね下重量が重くなる[2]。これにより線路への衝撃が懸念されるが、影響は微小である。逆に線路からの台車・車体やモーター自体への衝撃が懸念される[2]。このため、高速運転にはデメリットがある[注釈 2]。乗客にとっては乗り心地も悪くなる[1]

吊り掛け駆動用モーターは、衝撃に耐えるため、頑丈に作らざるを得ない。結果として重量や、ばね下重量も増加してますます衝撃が強まる。

駆動用モーターおよび歯車の振動が加速時にノーズを介して台車枠に伝わり、特有の騒音を生じる。

モーター本体と輪軸の間の摺動部分や歯車などが、大トルクによる負荷や、大きな重量による衝撃のために消耗しやすく、又、ギアボックスを密閉できないため、メンテナンス上の配慮を要する[注釈 3]。メンテナンスサイクルもカルダン駆動方式に比して短い。ただしトータルランニングコストに関しては、軌間や軌道の状態によっては必ずしもカルダン方式が優位とはいえない場合もある。

モーター本体と輪軸の間の摺動部分のアクスルメタル磨耗により噛み合わせの精度が低下することから、歯車には遊びが大きく取られており、歯車の歯も強度維持のため大形のものを使用しなければならず、小歯車を小径にして減速比を大きくとることが難しく、モーターの高回転化は困難である[4]。このため低回転・大トルク型のモーターを用いることになり、モーター自体大きくなりやすい[注釈 4]。この機構は、機関車ではあまり問題にはならないが、騒音や振動が大きくなる。また、歯面同士の打音は大きくなりがちで、力行電気制動といった負荷がかかる際には吊り掛け式特有の激しい騒音を発し、惰行時においても打音の発生がある。

これらの問題点は近年改善が進んでいる。輪軸架装ベアリングにおいてはアクスルメタルによるすべり軸受に代わってローラーベアリングによる転がり軸受が導入されるようになり、アクスルメタルやノーズがゴム緩衝されたり、歯車においても材質、焼入れ、歯の形や角度、バックラッシュの最適化等が試されている。この結果、摩耗・消耗・騒音の抑制が図られるようになっているが、ばね下重量が大きくなる構造という根本的な制約を克服するまでには至っていない。

但し、日本とは異なり許容軸重の大きなヨーロッパ諸国や南アフリカなどではばね下質量の増加に対して線路に余裕がありこのことが欠点とはならない場合もある。アクスルローラー方式の場合では、歯車中心間距離も正しく保たれ、しかも円すいころ軸受を用いればスラスト荷重も負担できることから歯車にかみ合い率の良いヘリカルギヤを用いることができるため、騒音などは日本の吊り掛け式とは全くイメージの異なる洗練されたものとなっている。
歴史

エジソン研究所出身のアメリカ人発明家フランク・ジュリアン・スプレーグ(Frank Julian Sprague、1857年 - 1934年)が、1880年トロリーポールを考案後、それまでは車体床上に電動機を置きベルトかチェーン駆動が主流だった動力伝達手段に変わって1885年に考案し、1888年にこれらを組み合わせた路面電車をバージニア州リッチモンドで運転開始したのが最初。このため「スプレーグ方式」(および表記揺れの「スプレイグ方式」)と呼ばれることもある(なお、スプレーグは直流電動機のトルク変動を小さくしたり総括制御の考案者でもある)[5][6]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:39 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef