合併_(集合論)
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事には参考文献外部リンクの一覧が含まれていますが、脚注による参照が不十分であるため、情報源が依然不明確です。適切な位置に脚注を追加して、記事の信頼性向上にご協力ください。(2022年2月)

数学において集合族の和集合(わしゅうごう)、あるいは合併集合(がっぺいしゅうごう)、合併(がっぺい、英語: union)、あるいは演算的に集合の和(わ、英語: sum)、もしくは結び(むすび、英語: join)とは、集合の集まり(集合族)に対して、それらの集合のいずれか少なくとも一つに含まれているような要素を全て集めることにより得られる集合のことである[注 1]
定義和集合のベン図による視覚化

集合 A と集合 B が与えられたとき、集合 A ∪ B を、A, B いずれかの集合の少なくとも一方に含まれる元 x の全体 (x ∈ A ∪ B ⇔ x ∈ A または x ∈ B) として定めて、あるいは同じことだが A ∪ B := { x ∣ x ∈ A  or  x ∈ B } {\displaystyle A\cup B:=\{x\mid x\in A{\mbox{ or }}x\in B\}}

として定義される集合を、集合 A, B の和集合と呼ぶ。また特に、A と B が交わりを持たないときの和集合 A ∪ B を A と B の(集合論的)直和(ちょくわ、 [set theoric] direct sum)あるいは非交和(ひこうわ、disjoint union)と呼び、"A ∪ B (disjoint)" や、明示的に記号を違えて A ⊔ B {\displaystyle A\sqcup B}

などと記すこともある。また、集合の族 M = { M λ } λ ∈ Λ {\displaystyle {\mathfrak {M}}=\{M_{\lambda }\}_{\lambda \in \Lambda }}

に対して、集合族に属するいずれかの集合に属する元 x ∈ M λ  for some  λ ∈ Λ {\displaystyle x\in M_{\lambda }{\mbox{ for some }}\lambda \in \Lambda }

の全体として集合族の和を ⋃ M ≡ ⋃ λ ∈ Λ M λ := { x   。   ∃ λ ∈ Λ : x ∈ M λ } {\displaystyle \bigcup {\mathfrak {M}}\equiv \bigcup _{\lambda \in \Lambda }M_{\lambda }:=\{x\ |\ {}^{\exists }\lambda \in \Lambda :x\in M_{\lambda }\}}

と定義する。有限個の元からなる集合族 A1, A2, ..., Ak の和集合は A 1 ∪ A 2 ∪ ⋯ ∪ A k , ⋃ n = 1 k A n {\displaystyle A_{1}\cup A_{2}\cup \cdots \cup A_{k},\quad \bigcup _{n=1}^{k}A_{n}}

などとも表す。自然数などで添え字付けられた集合の和についても A 1 ∪ A 2 ∪ ⋯ , ⋃ n = 1 ∞ A n {\displaystyle A_{1}\cup A_{2}\cup \cdots ,\quad \bigcup _{n=1}^{\infty }A_{n}}

などのように表すことがある。また、集合族に属する集合からどの異なる二つを選んでもそれらが交わりを持たないとき、つまり M , N ∈ M ,   M ≠ N ⇒ M ∩ N = ∅ {\displaystyle M,N\in {\mathfrak {M}},\ M\neq N\Rightarrow M\cap N=\emptyset }

となるとき、その集合族の和集合は直和、あるいは非交和であるといい、 ∐ M , ⨆ M , ∑ M , ∑ ∪ M {\displaystyle \coprod {\mathfrak {M}},\quad \bigsqcup \,{\mathfrak {M}},\quad \sum {\mathfrak {M}},\quad \sum {}^{\cup }\,{\mathfrak {M}}}

などの記号を用いることがある。


P = {1, 3, 5, 7, 9} (10 以下の
奇数の集合)、Q = {2, 3, 5, 7} (10 以下の素数の集合)とすると、P ∪ Q = {1, 2, 3, 5, 7, 9} である。


実数からなる半開区間の族 M = { (0, 1 − 1/n] 。n は 0 でない自然数 } とすると集合族 M の和集合は開区間 (0, 1) である:
⋃ M = ⋃ n = 1 ∞ ( 0 , 1 − 1 n ] = ( 0 , 1 ) . {\displaystyle \bigcup \mathbf {M} =\bigcup _{n=1}^{\infty }\left(0,\,1-{\frac {1}{n}}\right]=(0,1).} 実際、0 < x < 1 なる x に対して、x = 1 − ε となるような正の実数 ε が存在するが、ここで 1 / ε < n となる自然数 n は必ず存在して、この n に対して x は半開区間 (0, 1 − 1 / n] に属する。一方、1 ≤ x となる x は M のどの半開区間にも属さないので、和集合にも属さない。

実数の全区間(数直線)R = (−∞, ∞) は長さが 1 の半開区間の族 { (m, m + 1] 。m は整数 } の直和に分割できる。つまり
R = ∐ m = − ∞ ∞ ( m , m + 1 ] {\displaystyle \mathbb {R} =\coprod _{m=-\infty }^{\infty }(m,m+1]} が成り立つ。
空なる合併「空和,Lattice論,空な交叉」も参照

集合 X {\displaystyle X} に対して, P ( X ) {\displaystyle {\mathcal {P}}(X)} を X {\displaystyle X} の冪(ベキ)集合とする.全体集合 U を固定し、∪∅ を考えると、定義により
⋃ ∅ = ⋃ A ∈ ∅ A = { x ∈ U ∣ ∃ A ∈ ∅ : x ∈ A } = { x ∈ U ∣ ( ∃ A ∈ P ( U ) ) [ A ∈ ∅ ⏟ false   &   x ∈ A ] } = ∅ {\displaystyle \bigcup \varnothing =\bigcup _{A\in \varnothing }A=\{x\in U\mid {}^{\exists }A\in \varnothing :x\in A\}=\{x\in U\mid ({}^{\exists }A\in {\mathcal {P}}(U))[\underbrace {A\in \varnothing } _{\text{false}}\ \&\ x\in A]\}=\varnothing } となる。ここで,最初の空集合と最後の空集合はニュアンスが違う(後者は単なる空集合だが前者は属する集合がない集合族).なお最後の等号は「条件を満たす x ∈ U が存在しない」ということから従う。なお、 の場合も、その定義により ∩∅ = U がわかる。
性質

一般に和集合には以下の恒等式が存在する。A, B, C を任意の集合とし、a, b, c を任意の実数とする。
交換法則
A ∪ B = B ∪ A {\displaystyle A\cup B=B\cup A}

これは a + b = b + a {\displaystyle a+b=b+a\,}

に対応し、和の交換法則に相当する。
結合法則
( A ∪ B ) ∪ C = A ∪ ( B ∪ C ) {\displaystyle (A\cup B)\cup C=A\cup (B\cup C)}

これは ( a + b ) + c = a + ( b + c ) {\displaystyle (a+b)+c=a+(b+c)\,}

に対応し、和の結合法則に相当する。
分配法則
A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) {\displaystyle A\cap (B\cup C)=(A\cap B)\cup (A\cap C)}

これは a × ( b + c ) = ( a × b ) + ( a × c ) {\displaystyle a\times (b+c)=(a\times b)+(a\times c)\,}

に対応し、分配法則に相当する。 A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) {\displaystyle A\cup (B\cap C)=(A\cup B)\cap (A\cup C)}

これも集合の演算に成り立ち、数の演算とは異なっている。
濃度

有限集合からなる有限な集合族 M = { M λ } λ ∈ Λ {\displaystyle {\mathfrak {M}}=\{M_{\lambda }\}_{\lambda \in \Lambda }} に対し 。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:32 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef