受信機
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

この項目では、通信機器について説明しています。自動火災報知設備の受信機については「自動火災報知設備#受信機」をご覧ください。
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "受信機" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2020年2月)
受信機の一例(AMラジオ)

受信機(じゅしんき)は通信機の内、信号を受け取り、復調して情報を復元する装置のことである。また、信号の送り出し側は送信機である。ラジオ受信機(英語:radio receiver)、レシーバー(英語:receiver)、チューナー(英語:tuner)とも呼ばれる。

Bluetooth受信機」や一般製品として販売されている「受信機」などは送信も行っている場合もあるが、一般的には受信機と呼ばれる。

ふつう「レシーバー」の訳が「受信機」だが、レシーバーと言うとスピーカーなど音声再生装置まで含んで、日本語では「ラジオ」に相当することも多い(英語radioにもラジオ放送の受信機という意味はある)。受信機につなぐヘッドフォンを指してレシーバーと言うことさえある。一方受信機と言った場合スピーカーなどを含まない「チューナー」のような意味であることがあり、またラジオより本格的な装置、一般のラジオ放送以外の電波を受ける装置、を指していることが多い。

ラジオ#受信機も参照。
受信機の構成

受信機の基本的な構成は、以下からなる。まず、アンテナ(およびアース)で電波を受け、同調回路により目的の電波信号を取り出す。ここまでをRadio Frequency段、略してRF段ともいう。RFの信号から復調(検波)により音声信号を得る。ここから先をRF段に対してAudio Frequency段、略してAF段ともいう。AFの信号をスピーカーなどに出力し音声を得る。

鉱石ラジオはこの基本構成のみによる受信機である。実用的な受信機では、適宜増幅などを挟む。

図は、アナログ時代のオーソドックスな受信機の構成である。高周波1段、スーパーヘテロダイン方式で中間周波2段増幅のもので、無線従事者試験の問題等でも見かけられる。主として真空管時代には「高1中2」とも称ぜられた。高1中2受信機
高周波増幅器
入力された信号を選択および増幅する低雑音増幅器である。信号が微弱な場合、初段に増幅段を設けると信号対雑音比(SN比)の良い装置にすることが可能である。現在ではUHF帯などでは低雑音のHEMTなどのトランジスタが用いられる。UHF帯以上の受信機では、LNA (Low Noise Amplifier) と呼ばれることが多い。入力信号が十分大きい場合や要求仕様によっては、フロントエンドの高周波増幅段は省略可能である。なお、ローノイズなトランジスタとロスの小さなBPFを組み合わせてミクサを設計すれば、LNAがある場合と同等の受信感度が得られることから、1980年代の自動車電話ではLNAは使われていない。高周波増幅器の隠れた役目として、ローカルリークと呼ばれるアンテナからの不要電波放射(局部発振器(ローカル)→ミキサ→高周波増幅器→アンテナ)を抑える役目がある。増幅器は順方向にはゲインがあるが、逆方向に対してはマイナスゲインとなり、逆流してくるローカル信号を減衰させる。
周波数変換器
局部発振器と混合器(ミキサまたはミクサとも言う)から構成される。受信信号を、その周波数に関係なく一定の低い周波数(中間周波数、IF。図の例の中波帯 (531 - 1602kHz) の場合は455kHzの中間周波数が多い)に変換する回路である。ここで周波数変換する理由は、以下の通りであり、受信回路の中でも特に重要な意味を持つ。

受信対象信号の周波数のままで復調可能なレベルまで増幅しようとすると正帰還が生じて発振するなど増幅器が不安定になりやすい。

受信対象信号以外の信号を狭帯域のフィルタで減衰させないと、混信や後段アンプの飽和が発生してしまうが、高選択度の狭帯域フィルタの同調周波数を可変するのは容易でないこと、低い周波数の方が高選択度の狭帯域フィルタ作りやすいことから、一定の低い周波数(=中間周波数)の信号に変換する必要がある。

後段の受信処理回路はある程度低い周波数の方が作りやすいため、一定の低い周波数(=中間周波数)に変換する必要がある。
これをスーパーヘテロダイン(俗にスーパーと略された。周波数変換1回のものをシングルスーパーという。2回のものはダブルスーパー)方式と呼ぶ。1918年エドウィン・アームストロング によって発明された。周波数は、入力信号と局部発振器出力の差の周波数に変換される(最近では中間周波数が受信周波数よりも高い場合もあり、その場合には和の周波数という構成もありうる)。なお、スーパーヘテロダイン方式では、受信対象の周波数以外にイメージ周波数も受信する(イメージ混信)。イメージ周波数の信号を受信しないためには、ミキサに入る前に、フィルタでイメージ周波数を十分に減衰させる必要があるが、最近の受信機、例えば、Bluetoothの受信回路ではイメージリジェクション型のミキサが使われるようになってきており、その必要が無くなってきている。
中間周波増幅器
この増幅器の目的は、1.復調可能なレベルまでの増幅、2.隣接した周波数の不要信号を除去するためのフィルタ機能、3.入力信号の強弱によって増幅率を可変して復調器への入力信号レベルを一定に保つ自動利得制御 (AGC) 機能などである。
復調器
受信する通信方式によって必要な復調機能を備える。ここでは包絡線検波器を仮定した。
低周波増幅器
検波器の出力である可聴周波数信号をスピーカーを鳴らせるレベルまで電力増幅する。
スーパーヘテロダイン以外の回路方式

スーパーヘテロダイン以外の回路方式には次のものがある。無線分野で現在の主流は、ダブルスーパーヘテロダイン方式とダイレクトコンバージョン方式である。AM、FM受信機はスーパーヘテロダイン方式がいまでも主流である。
ストレート
受信した高周波信号を周波数変換を行わないで増幅後あるいは増幅せずに検波器に入力し、低周波信号を得るもの。実用上はほとんど用いられない。電子工作キットのAMラジオなどに現在でも見られる。
レフレックス
高周波信号を1個の真空管・トランジスタで増幅し、検波したのち、再び同じ真空管・トランジスタの入力に戻して低周波の増幅を行うもの。真空管やトランジスタが高価であった時代の受信機によく見られた構成。電子工作キットのAMラジオなどには現在でも見られる。
ヘテロダイン
増幅した高周波信号を局部発信と混合し受信周波数を変調した後、中間周波数増幅ないし低周波増幅を行う。受信局を変えても受信周波数と局部発信周波数の差を維持するスーパーヘテロダインと違い局部発信と受信周波数の自動連動装置を持たないため再生ラジオ以上に、受信が難しい。
スーパー
これは受信装置の一部あるいは総てを同調回路と連動するようにしチューニングを行いやすくしたものに付与されるもので、特定の回路方式を指すものではない。オート (AUTO) が再生式受信機を指すオートダインと被るために説頭語として付与された。日本においては超再生(スーパーオートダイン)、自動式局部発信混合(スーパーヘテロダイン)が有名である。
再生
高周波信号の一部を入力側に戻す(正帰還)方式。簡単な回路で高い増幅度が得られる一方で、帰還量が強すぎると発振してしまう欠点がある。意図的に発振を断続(クエンチング)させることで帰還量の調整を不要とした方式があり、超再生と呼ばれる。現在ではほとんど用いられていない。高周波増幅段を持たない構成(並三、並四など)は、帰還量過大で発振した場合に信号がアンテナから電波として放出される、不要輻射となる。第二次大戦敗戦後の1947年、日本政府は GHQ の勧告により企業による再生式受信機の製造販売を禁止した[1]
高周波同調 (TRF)
高周波増幅段(場合によっては複数段)の前後に同調回路を持ち、それぞれで同調する方式。複同調とも。
ダブルスーパーヘテロダイン
スーパーヘテロダインのIFアンプの後に、もう一つミキサと局発を用意して、もう一回周波数変換する方式である。最初のIFを1stIF、局発を1stローカル、二番目のIFを2ndIF、局発を2ndローカルという。二回に分けて周波数を落としていくため1stIF周波数を高くでき、イメージ周波数を離すことが出来るため、簡単なRFフィルタでイメージ妨害に強くできるメリットがある。無線機等で現在、もっとも普及している方式である。なお、理屈上はミキサと局発は数を増やせば増やすほどイメージ妨害を回避でき、段数によってトリプル(3回)、クワドラプル(4回)のものもあるが、実際はRFフィルタで十分にイメージを落とすことが可能であるため、現在では非常に特殊である。ペンタプル(5回)はまだ現れていない。かつて、シングルよりもダブル、ダブルよりもトリプルの方が性能が良いと単純に評価された時代があったが、フィルタや半導体、設計技術が発達した現在では、このような評価は意味を持たない。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:24 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef