原子
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

「原子」のその他の用法については「原子 (曖昧さ回避)」をご覧ください。

原子
ヘリウム原子の原子核 (赤) と電子雲の分布 (黒) を描いた模式図。ヘリウム4の原子核 (右上) は実際には電子雲とよく似た球対称である。また、より複雑な原子核は必ずしも球対称とならない。黒い横帯は1オングストローム (10?10 mまたは100 pm) の長さを示す。
分類化学元素の最小単位
組成陽子中性子からなる原子核および電子
相互作用弱い相互作用
強い相互作用
電磁相互作用
重力相互作用
反粒子反原子
理論化ジョン・ドルトン(19世紀)
質量1.67×10?27 - 4.52×10?25 kg
電荷ゼロ(中性)またはイオン電荷
荷電半径31 pm (He) - 298 pm (Cs) (原子半径)
テンプレートを表示

原子(げんし、: atom)は化学的手段では分割できない元素の最小単位であり、陽子中性子からなる原子核と、それを取り囲む電磁気的に束縛された電子の雲から構成される[1]。原子は化学元素の基本粒子であり、化学元素は原子に含まれる陽子の数によって区別される。たとえば、11個の陽子を含む原子はナトリウムであり、29個の陽子を含む原子はである。中性子の数によって元素の同位体が定義される。

原子は非常に小さく、直径は通常100ピコメートル(pm)程度である。人間の毛髪の幅は、約100万個の炭素原子を並べた距離に相当する。これは可視光の最短波長よりも小さいため、従来の顕微鏡では原子を見ることはできない。原子は非常に小さく、量子効果による作用を受けるため、古典物理学では原子の挙動を正確に予測することは不可能である。

原子の質量の99.94%以上は原子核にある。原子核の陽子は正の電荷を、電子は負の電荷を持つが、中性子はあっても電荷を持たない。陽子と電子の数が通常のように等しい場合、原子は電気的に中性である。陽子より電子が多い原子は全体として負の電荷を持ち、陰イオン(または負イオン、アニオン)と呼ばれる。逆に、電子より陽子が多い原子は全体として正の電荷を持ち、陽イオン(または正イオン、カチオン)と呼ばれる。

原子を構成する電子は電磁気力によって原子核内の陽子に引き寄せられる。原子核内の陽子と中性子は核力によって互いに引き合っている。この核力は通常、正電荷を帯びた陽子どうしが反発する電磁気力よりも強い。しかし特定の状況下では、反発する電磁気力が核力よりも強くなる。この場合、原子核は分裂して、さまざまな元素が残る。これは原子核崩壊の一形態である。

原子は化学結合によって1つまたは複数の他の原子と結合し、分子結晶などの化合物を形成することができる。自然界で観察されるほとんどの物理的変化は、原子が互いに結合したり分離する能力が引き起こしている。化学は、こうした変化を研究する学問である。
原子論の歴史詳細は「原子論 (科学)」を参照
哲学において詳細は「原子論」を参照

物質が不可分の小さな粒子からできているという基本的な考え方は、多くの古代文化に登場する古い考え方である。アトム(atom)という言葉は、古代ギリシア語で「切断できない」という意味のアトモス(atomos)に由来する[注釈 1]。この古代の考えは、科学的な推論というよりも、むしろ哲学的な推論に基づいていた。現代の原子論は、こうした古い概念に基づいているわけではない[2][3]。19世紀初頭、科学者ジョン・ドルトンは、化学元素が重量の離散的な単位で結合しているように見えることに気づき、これを物質の基本単位な単位と考え、その単位を指す言葉として「原子」という言葉を使うことにした[4]。約1世紀後、ドルトンの原子は、実際には分割不可能ではないことが発見されたが、この言葉が定着した。
ドルトンの倍数比例の法則ジョン・ドルトンの『化学哲学の新体系(New System of Chemical Philosophy)』に描かれたさまざまな原子と分子 (1808年)

1800年代初頭、イギリスの化学者ジョン・ドルトンは、自身や他の科学者が集めた実験データをまとめ、現在「倍数比例の法則」として知られる法則を発見した。彼は、ある化学元素を含む化合物について、化合物中の元素の含有量を重量で表現したとき、小さな整数の比率で異なることに気づいた。この法則から、各化学元素が重量の基本単位によって他の元素と結合していることが示唆され、ドルトンはこれらの単位を「原子」と呼ぶことにした。

たとえば、酸化スズには2種類あり、一方はスズ88.1%と酸素11.9%の灰色の粉末で、もう一方はスズ78.7%と酸素21.3%の白い粉末である。これらの数値を整理すると、灰色粉末にはスズ100 gに対して約13.5 gの酸素が、白色粉末にはスズ100 gに対して約27gの酸素が含まれる。13.5と27の比率は 1:2 である。ドルトンは、これらの酸化物には、スズ原子1個につき1個または2個の酸素原子が存在すると結論づけた(SnOSnO2[5][6]

ドルトンは酸化鉄も分析した。酸化鉄には、鉄78.1%と酸素21.9%の黒色粉末と、鉄70.4%と酸素29.6%の赤色粉末がある。この数値を整理すると、黒色粉末には鉄100 gに対して約28 gの酸素が、赤色粉末には鉄100 gに対して約42 gの酸素が含まれる。28と42の比率は 2:3 である。ドルトンは、これらの酸化物には、鉄原子2個につき2個または3個の酸素原子が存在すると結論づけた(Fe2O2Fe2O3[注釈 2][7][8]

最後の例として、亜酸化窒素は窒素63.3%と酸素36.7%、一酸化窒素は窒素44.05%と酸素55.95%、そして二酸化窒素は窒素29.5%と酸素70.5%である。これらの数値を整理すると、亜酸化窒素では窒素140 gに対して酸素が80 g、一酸化窒素では窒素140 gに対して酸素が約160 g、二酸化窒素では窒素140 gに対して酸素が320 g含まれる。80、160、320の比率は 1:2:4 である。これらの酸化物のそれぞれの化学式は、N2ONO、そして NO2 である[9][10]
異性

科学者たちは、物質の中には、全く同じ化学含有量でありながら異なる性質を持つものがあることを発見した。たとえば、1827年、フリードリヒ・ヴェーラーは、雷酸銀シアン酸銀がともに銀107部、炭素12部、窒素14部、酸素12部であることを発見した(現在では、両者の化学式はともにAgCNOであることがわかっている)。1830年、イェンス・ヤコブ・ベルセリウスは、この現象を説明するために異性(isomerism)という言葉を導入した。1860年、ルイ・パスツールは、異性体の分子は組成は同じだが、原子の配置が異なるのではないかという仮説を立てた[11]

1874年、ヤコブス・ヘンリクス・ファント・ホッフは、炭素原子が四面体配置で他の原子と結合することを提案した。彼は、これに基づいて有機分子の構造を説明し、化合物がいくつの異性体を持ち得るかを予測することができた。ペンタン(C5H12)を例に考えてみよう。ファント・ホッフの分子モデリング法によると、ペンタンには3つの配置が可能であると予測でき、科学者たちは実際に3つのペンタンの異性体を発見した[12][13]。.mw-parser-output .tmulti .thumbinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;align-items:center}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}n-ペンタンイソペンタンネオペンタンヤコブス・ヘンリクス・ファント・ホッフの分子構造モデリング法は、ペンタン (C5H12) について3つの異性体の可能性を正しく予測した。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:213 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef