原子時計
[Wikipedia|▼Menu]
アメリカ国立標準技術研究所(NIST)が開発したチップサイズの原子時計

原子時計(げんしどけい、: atomic clock)は、原子分子スペクトル線の高精度な周波数標準に基づき最も正確な時間を刻む時計である。高精度のものは10?15(3000万年に1秒)程度、小型化された精度の低いものでも10?11(3000年に1秒)程度の誤差である。

原子時計に基づく時刻系を原子時と呼ぶ。現在のSIおよび国際原子時: International Atomic Time)は原子時計に基づく。
原理原子時計の精度の向上。縦軸は一日当りの誤差(ナノ秒)、横軸は西暦を表す。NIST-F1ではレーザー光によって原子の熱運動を低減することで精度を上げている(レーザー光冷却)

原子分子スペクトル吸収線・輝線(決まった周波数電磁波を吸収・放射する性質もしくはその周波数)を持ち、水晶振動子などよりも高精度な周波数標準となる。周波数は時間の逆数であるから、時間を高精度で測定できる。SI秒の定義もこの性質を利用している。

原子時計は、このような周波数標準器と超高精度の水晶振動子によるクォーツ時計とを組み合わせ、その水晶振動子の発振周波数を常に調整・修正する仕組みによって実現される。

原子時計を元に作られた正確な時刻情報は標準電波として放送されており、その電波を受信してクォーツ時計の誤差を修正しているのが電波時計である。

原子時計には、次のような様々なタイプがある[1]

マイクロ波時計 (例)セシウム原子時計(現在のの定義となっている。)

光原子時計

単一イオン時計   (例)ストロンチウムイオン時計、イッテルビウムイオン時計

中性原子光時計

旧型(自由空間のもの) (例)カルシウム時計、マグネシウム時計

新型(束縛されている)  (例)ストロンチウム光格子時計、イッテルビウム光格子時計



セシウム原子時計1984年から1993年まで国際原子時の校正に使われていたセシウム原子時計の共振部。国立科学博物館の展示。

マイクロ波時計の一種である。アンモニアセシウムの他にルビジウム水素なども用いられるが、セシウム原子時計の例について述べる。まず炉から放射されたセシウム133蒸気を、磁場によって超微細準位の異なる2つに分離する。分離されたうち基底状態の原子に水晶振動子を基準として 9192631770 Hz のマイクロ波を照射し、これによって励起された原子に再び磁場をかけて分離する。励起状態のセシウムの量が多くなるよう周波数を調整し、正確な 9192631770 Hz のマイクロ波を作り出す。1967年から、国際的な1の定義となっている。誤差は1億年に1秒(10?15)程度とされている。最高精度を実現しているのは1次標準の数台に限られており、多くは少し精度の低い商業的に作られた2次標準を用いている。
その他の原子時計

水素メーザ原子時計 - 測定時間1秒で10?13、1000秒で10?15

ルビジウム原子時計 - 測定時間1秒で10?11、1000秒で10?13

イッテルビウムイオン原子時計 - 測定時間1秒で 10?12.5、1000秒で 10?13.5
[2]

光格子時計NISTの2013年のイッテルビウム光格子原子時計。

レーザーを使って原子を光格子に捕捉するアイデアはロシアの物理学者Vladilen Letokhovによって1960年代に提唱された[3]。原子時計の脱進機のためのマイクロ波から光波(計測はより難しいが性能はより高い)までの波長域についての理論はジョン・ホールテオドール・ヘンシュによって開拓され、2005年にノーベル物理学賞を受賞した。2012年にノーベル物理学賞を受賞したデービッド・ワインランドは高い安定性の時計を開発するための捕捉された単一イオンの性質を探求したパイオニアであった[4]。最初の光時計はNISTのJun YeやAndrew Ludlowによってストロンチウムを用いて2000年に開発が始められ、2006年に発表された[5]

フェムト秒周波数コム光格子の開発は原子時計を新世代へと導いた。これらの時計はマイクロ波よりも可視光を放出する原子遷移に基づいている. 光時計の開発の主な障壁は光周波数の直接計測の困難さにある。この問題はフェムト秒周波数コムと呼ばれる自己参照型モード同期レーザーによって解消された, 2000年に周波数コムが開発される以前は、テラヘルツ技術が電波と光周波数のギャップを埋めるために必要とされていたが、そのシステムは煩雑なものだった。しかし、周波数コムが洗練されたことで、この計測の可用性は大幅に上がり、世界各地で数々の光時計が開発される道を開いた[6]

電波の波長域では、吸光分光法が発振器(この場合レーザー)を安定させるために用いられる。光の周波数がフェムト秒コムを用いて可算的な電波周波数に分割される際、位相ノイズの帯域幅も同じ因子によって分割される。レーザー位相ノイズの帯域幅は安定なマイクロ波源よりも一般的に大きいが、分割後にはより小さくなる[6]

光周波数を用いた原子時計の主要な標準システムは以下のものがある:

イオントラップ中に隔離された単一イオン;

光格子中に捕捉された中性原子[7][8]

三次元量子気体の光格子中に充填された原子群[9]

これらのテクニックは原子やイオンを外部の雪道から高度に隔離し、非常に安定な周波数基準を実現する[9][10]レーザーおよび磁気光学トラップを用いて原子を冷却することで、精度の向上が得られる[11]

捕捉原子の候補としては、Al+, Hg+/2+,[7] Hg, Sr, Sr+/2+, In+/3+, Mg, Ca, Ca+, Yb+/2+/3+, Yb and Th+/3+.[12][13][14]がある。原子時計の電磁放射線の色はシミュレートされた元素に依存する。例えば、カルシウム光時計は赤色光が産出された際に共鳴し、イッテルビウム光時計は紫色光で共鳴する[15]
ストロンチウム光格子時計

レーザー光の干渉定在波によって作られた光格子の中に、ストロンチウム原子約100万個をラム・ディッケ束縛により閉じこめる(原子間相互作用を排除することにより、単一原子時計100万台と等価)。光格子に閉じ込めるために原子を数μKまでレーザー冷却する。ラム・ディッケ束縛によりドップラーシフトおよび反跳シフトの影響を排除できる。さらに、光格子を構成するレーザーの波長を適切に選定する(魔法波長(~800 nm)あるいは魔法周波数(~375 THz)と称する)ことにより、ストロンチウム原子の時計遷移の基底状態および励起状態における光格子レーザーに起因するエネルギー準位のシフト(光シフトと称する。その量は時計遷移の基底状態、励起状態の両者において、光格子レーザー周波数 320?420 THz に対し遷移周波数換算 ?100??200 kHz 程度)の差[注 1]をほぼゼロとすることが出来るため、光シフトの影響が極めて少ない(魔法周波数を9桁の精度で決めてプロトコルとして共有し、18桁の計時精度を実現する)。2001年東京大学の香取秀俊[16](2011より理化学研究所主任研究員兼務)によって提唱され[17]2003年に基礎実験に成功[18]し、2005年に開発に成功[19]した。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:50 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef