原子力推進
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

この項目では、原子力の動力化について説明しています。原子力利用の推進については「原子力発電」をご覧ください。

原子力推進(げんしりょくすいしん、英語: Nuclear propulsion)とは、原子力をエネルギー源とする推力のこと。各種の方式がある。

原子力潜水艦を含む原子力船原子力飛行機、原子力巡航ミサイル[1]が実用化または実験されているほか、各種の原子力ロケット宇宙船などが考察されている。

内燃機関などに比べて稼働時間の長さや推力の大きさといった利点はあるが、製造や運用、事故、退役後の解体時に放射線被曝放射能汚染のリスクを伴う[2]
種類
原子力蒸気機関推進

@media screen{.mw-parser-output .fix-domain{border-bottom:dashed 1px}}原子力蒸気機関推進は、原子炉を熱源としたボイラーにより、(高圧)蒸気を発生し、その蒸気で各種蒸気機関を駆動する機関ないし推進方式。[要出典]
原子力電気推進

原子力電気推進 (Nuclear electric propulsion) は、いわゆる原子力発電(原子力蒸気機関による発電)ないし、原子力電池(これはどちらかというと、崩壊熱電池)などによる電力を使用し、推進手段として電気による推進(電動機や、イオンエンジンロケットなどの電気ロケット(電気推進)による)を用いる方式[3]。1957年にソビエト連邦で建造された「レーニン」およびそれに続く原子力砕氷船の例がある(電動機による推進)。

アメリカ航空宇宙局(NASA)によるプロメテウス計画では電気エネルギーによるロケット(電気推進)が計画・実験された[4]

ロシア連邦では、旧ソ連時代の原子炉搭載型人工衛星コスモス954号およびコスモス1402号で培った技術を改良し、将来の惑星間飛行(interstellar flights)における現実的な手段として使用することも構想された[5][6]。これはソビエト連邦の宇宙開発で1970?80年代に宇宙用原子炉「ブーク」(Buk)や「トパース(英語版)」(Topaz)を搭載したレーダー偵察衛星を合計32機打ち上げて運用した実績を基礎としている。
核熱ロケット推進核熱ロケット詳細は「核熱ロケット(英語版)」を参照

核熱ロケット (nuclear thermal rocket) は、熱ロケット (thermal rocket) の一種で熱源に核反応を利用するものであり、核分裂炉又は核融合炉の高熱により直接推進剤(通常は水素[7])を加熱膨張させ、ノズルから噴出して推進する方式[8][9]宇宙開発競争の最中、米ソ両国により研究が行われたが、実用化にはいたっていない。

アメリカではNERVA(Nuclear Engine for Rocket Vehicle Application)計画で、サターンロケットの上段で使用するというコンフィギュレーションが検討された。また2023年には国防高等研究計画局(DARPA)とNASAにより軌道上実証機の開発が開始されている[10]。ロシアでは、ロスコスモスRD-0410核熱ロケットエンジンをベースにしたメガワット級原子炉を搭載したスペースプレーンの開発計画を2010年から進行中であるとされている[11]
核パルス推進詳細は「核パルス推進」を参照

核パルス推進 (nuclear pulse propulsion) は、ヴィークル後方で爆発を繰り返し発生させ、その衝撃で推進するパルス推進方式のロケットなどに、核爆発を使うものである。オリオン計画ダイダロス計画で研究が行われた。原爆核分裂反応)を使用する場合は核分裂パルス推進、水爆核融合反応)を使用する場合は核融合パルス推進ともいう。オリオン計画における初歩的な研究として、Hot Rod と名付けられた、小型の模型(説明によれば、大きさ約1mで質量約100kg)を通常の火薬による爆発でパルス推進した実験の動画が残されている[12]
核融合ロケット推進

核融合ロケット (Fusion rocket) 推進は、エネルギー源として核融合を使用するロケットによる推進の総称。推進手段は電気推進や核パルス推進となる。核融合技術そのものが実用化されていないが、推進機構の構想としては存在する。
バサード・ラムジェット推進

バサード・ラムジェット: Bussard ramjet)は、核融合ロケットの燃料として星間物質水素を使用する理論上の推進方式である。宇宙船前方に設けられた直径数キロメートルの集積装置で水素を集め、それを燃料として核融合を行う。
歴史"Tory-IIC" 試作機NRX A-1原子力ロケットエンジンNERVA原子力ロケットエンジン

原子力船原子力機関車などもあるが、ここでは航空宇宙関係を中心に扱う。

アメリカ合衆国空軍原子力飛行機計画から述べる。1955年9月から1957年3月まで原子力飛行機NB-36Hによる原子力搭載前飛行実験が47回行なわれたが、1961年には計画そのものが破棄された。1950年代後半から1964年7月までプルート計画として原子力エンジンを搭載した巡航ミサイルの開発が進められていた。大陸間弾道弾(ICBM)の進歩により必要性がなくなり中止された。

ソ連も原子力飛行機を開発しており、改造Tu-95ターボプロップ戦略爆撃機に小型原子炉「クズネツォフNK-14原子力エンジン」を搭載したTu-119で試験していた。実際に飛行中に原子炉を稼動させ、1965年に初飛行したといわれている。また、一部情報によれば48時間連続して原子炉を稼動させることに成功したとされ、乗員は放射線被曝せず生還できたという。

一時期、ソ連科学誌の記事からの連想か、ミヤシチョフ設計局の試作超音速戦略爆撃機M-50を“ソ連の原子力飛行機”とする誤報が流布し、(噂を利用するためか)1961年7月のツシノ航空ショーで、実際には亜音速機だったM-50を公開し、ソ連の航空技術に対する過大評価と脅威を与える事に成功したが、やはり、実戦配備可能な原子力飛行機は開発されなかったとされる。

近年、原子力発電や原子力潜水艦の炉心のような一般的な原子炉を利用するのではなく、「核異性体転移」という現象をX線照射で人工的に制御する事で膨大な熱量を得て空気の薄い超高空でも飛行可能で、長期間燃料交換の必要がない「TIHE(Triggered Isomer Heat Exchanger)[13][14]」という概念の原子力推進が研究されている。TIHE反応炉は、一般ジェットエンジンの燃焼室に当たる位置に置かれるモノで、ルテチウムハフニウムタンタルいずれかの核異性体で出来た細いチューブ状に成形された炉剤が製反応炉に蜂の巣のように詰め込まれる。X線照射の調節により、始動・停止・スロットリング(推力調整)の確実な調整が可能である。

例えば、長時間偵察飛行を要求されるRQ-4 Global Hawkクラスの無人航空機(UAV)に採用した場合、一回の燃料補給(炉剤交換)で数週間から数ヶ月もの滞空時間が得られるが、核異性体製造には加速器などが必要なため莫大なコストが掛かり、微量とはいえ若干の放射能汚染は避けられないため、実用化にはほど遠い段階である。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:54 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef