半導体デバイス
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "半導体素子" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2021年3月)

半導体素子(はんどうたいそし、: semiconductor device)とは、半導体で作られた電子回路の構成要素である。半導体デバイスともいう。

種類ごとに電気的特性と機能を持っており、基本素子として整流機能を有するダイオード増幅機能を有するトランジスタ、スイッチング機能を有するサイリスタ等がある。またシステム的なものとして、トランジスタの論理回路を集積させて高度な演算機能を実現する集積回路(IC・LSI)、CCDCMOSを利用した光電変換機能を集積した固体撮像素子などがある。これらについて半導体素子・半導体デバイスは動作原理を表す概念的モデルから、具体的な製品まで、様々なレベルのものを指す。

コンピュータ携帯電話等の電子機器でその中心的機能を担っている。さらに機械分野でも制御機能の高度化に伴い自動車や各種産業機器にも組込まれている。

世界の電子機器メーカーの半導体需要は2018年において4,766億ドルであった[1]

半導体素子(集積回路)製作の大まかな流れ
クリーンルーム
半導体を利用した電子機器はホコリに弱いため、作業はこのような清浄な環境下で行われる。
シリコンインゴット(左の長い円柱)をスライスして、ウェハー(下の薄い円盤)を作る。

回路の実装が済んだウェハー。碁盤の目状に見えるのは同一の回路(ダイ)が並んでいるため。これをダイヤモンドカッターで切り分ける。
ウェハーから切り分けられたダイ。複雑に入り組んだ回路が見える。
最終的な状態。

これはモールド(封止)がされていないチップの例。中心にウェハーから切り分けられたダイが実装されている。
その後、スマートフォンやテレビといった様々な電子機器内部に搭載される。

特徴

半導体素子が普及する以前は電気回路における能動素子として電子管真空管など)が使われていた。しかし半導体素子には次のような特徴があり、特定の用途・領域を除き電子管を代替した。

固体素子であり、真空管のように真空空間の確保、熱電子放出の機構を必要としない。

小型化、集積化が可能である。電力消費が少ない。

製造工程において組み立て作業を回避可能で、量産、生産性向上に適している。

機械的機構が無いため 振動加速度の機械的条件に強く、低温動作も含めて長寿命化、信頼性確保の観点で有利である。

当初真空管に比べて不利とされていた弱点についても、それを補う方法が開発された。

温度による特性の変化が大きいので、補償回路が必要である。→補償回路を含んだ集積回路の登場。

電気的なストレス(過負荷、過電圧、過電流など)に弱い。→回路設計上の工夫や各種保護回路との併用。

材料とその性質詳細は「半導体#物性」を参照

2018年現在では単元素のシリコン、化合物半導体としてヒ化ガリウム (GaAs)、窒化ガリウム (GaN)、炭化珪素 (SiC)等がよく用いられる。

半導体材料の伝導性は通常多数キャリア(majority carrier)(N型半導体では電子P型半導体では正孔)の移動により発現する。多数キャリアの存在密度は結晶構造中の自由電子の過不足を生じさせる不純物に依存する。しかし、トランジスタなど多くの半導体素子では、動作するためには少数キャリア(minority carrier)N型半導体では正孔、P型半導体では電子が必要である。
半導体素子の例

半導体素子には、トランジスタダイオード(整流器)、発光ダイオード (LED) 等がある。こういった単体の半導体素子は「ディスクリート半導体」(個別半導体)と呼ばれる個別部品として生産・使用されているが、多数の半導体素子を一括して作成した集積回路 (IC, LSI) の方が流通量や産業規模としても大きな位置を占めている。集積回路になると、トランジスタやダイオードといった能動素子に加えて、抵抗やコンデンサといった素子も半導体素子として構築される。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:50 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef