十三角形
[Wikipedia|▼Menu]
正十三角形

十三角形(じゅうさんかくけい、じゅうさんかっけい、triskaidecagon)は、多角形の一つで、13本のと13個の頂点を持つ図形である。内角は1980°、対角線の本数は65本である。
正十三角形

正十三角形においては、中心角外角は27.692307…°で、内角は152.307692…°となる(下線部は循環節)。一辺の長さが a の正十三角形の面積 S は S = 13 4 a 2 cot ⁡ π 13 ≃ 13.1858 a 2 {\displaystyle S={\frac {13}{4}}a^{2}\cot {\frac {\pi }{13}}\simeq 13.1858\,a^{2}}

となる。

cos ⁡ ( 2 π / 13 ) {\displaystyle \cos(2\pi /13)} を平方根と立方根で表すと[1]、 cos ⁡ 2 π 13 = − 1 + 13 12 + 1 6 26 − 5 13 + 3 i 39 2 3 + 1 6 26 − 5 13 − 3 i 39 2 3 = 0.8854560... {\displaystyle \cos {\frac {2\pi }{13}}={\frac {-1+{\sqrt {13}}}{12}}+{\frac {1}{6}}{\sqrt[{3}]{\frac {26-5{\sqrt {13}}+3i{\sqrt {39}}}{2}}}+{\frac {1}{6}}{\sqrt[{3}]{\frac {26-5{\sqrt {13}}-3i{\sqrt {39}}}{2}}}=0.8854560...}

Trigonometric constants expressed in real radicalsより cos ⁡ 2 π 13 = 13 − 1 + 104 − 20 13 − 12 i 39 3 + 104 − 20 13 + 12 i 39 3 12 {\displaystyle \cos {\frac {2\pi }{13}}={\frac {{\sqrt {13}}-1+{\sqrt[{3}]{104-20{\sqrt {13}}-12i{\sqrt {39}}}}+{\sqrt[{3}]{104-20{\sqrt {13}}+12i{\sqrt {39}}}}}{12}}}

また、以下の関係が成り立つ。 2 cos ⁡ 2 π 13 + 2 cos ⁡ 10 π 13 = − 2 + − 260 − 156 3 i 3 ω + − 260 + 156 3 i 3 ω 2 6 = 1 3 ( − 1 + 13 ⋅ − 5 − 3 3 i 2 13 3 ω + 13 ⋅ − 5 + 3 3 i 2 13 3 ω 2 ) {\displaystyle 2\cos {\frac {2\pi }{13}}+2\cos {\frac {10\pi }{13}}={\frac {-2+{\sqrt[{3}]{-260-156{\sqrt {3}}i}}\omega +{\sqrt[{3}]{-260+156{\sqrt {3}}i}}\omega ^{2}}{6}}={\frac {1}{3}}\left(-1+{\sqrt {13}}\cdot {\sqrt[{3}]{\frac {-5-3{\sqrt {3}}i}{2{\sqrt {13}}}}}\omega +{\sqrt {13}}\cdot {\sqrt[{3}]{\frac {-5+3{\sqrt {3}}i}{2{\sqrt {13}}}}}\omega ^{2}\right)} 2 cos ⁡ 4 π 13 + 2 cos ⁡ 6 π 13 = − 2 + − 260 − 156 3 i 3 + − 260 + 156 3 i 3 6 = 1 3 ( − 1 + 13 ⋅ − 5 − 3 3 i 2 13 3 + 13 ⋅ − 5 + 3 3 i 2 13 3 ) {\displaystyle 2\cos {\frac {4\pi }{13}}+2\cos {\frac {6\pi }{13}}={\frac {-2+{\sqrt[{3}]{-260-156{\sqrt {3}}i}}+{\sqrt[{3}]{-260+156{\sqrt {3}}i}}}{6}}={\frac {1}{3}}\left(-1+{\sqrt {13}}\cdot {\sqrt[{3}]{\frac {-5-3{\sqrt {3}}i}{2{\sqrt {13}}}}}+{\sqrt {13}}\cdot {\sqrt[{3}]{\frac {-5+3{\sqrt {3}}i}{2{\sqrt {13}}}}}\right)} 2 cos ⁡ 8 π 13 + 2 cos ⁡ 12 π 13 = − 2 + − 260 − 156 3 i 3 ω 2 + − 260 + 156 3 i 3 ω 6 = 1 3 ( − 1 + 13 ⋅ − 5 − 3 3 i 2 13 3 ω 2 + 13 ⋅ − 5 + 3 3 i 2 13 3 ω ) {\displaystyle 2\cos {\frac {8\pi }{13}}+2\cos {\frac {12\pi }{13}}={\frac {-2+{\sqrt[{3}]{-260-156{\sqrt {3}}i}}\omega ^{2}+{\sqrt[{3}]{-260+156{\sqrt {3}}i}}\omega }{6}}={\frac {1}{3}}\left(-1+{\sqrt {13}}\cdot {\sqrt[{3}]{\frac {-5-3{\sqrt {3}}i}{2{\sqrt {13}}}}}\omega ^{2}+{\sqrt {13}}\cdot {\sqrt[{3}]{\frac {-5+3{\sqrt {3}}i}{2{\sqrt {13}}}}}\omega \right)}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:36 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef