共鳴トンネルダイオード
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この項目「共鳴トンネルダイオード」は翻訳されたばかりのものです。不自然あるいは曖昧な表現などが含まれる可能性があり、このままでは読みづらいかもしれません。(原文:en: Resonant-tunneling diode (07:22, 22 February 2022 UTC))
修正、加筆に協力し、現在の表現をより自然な表現にして下さる方を求めています。ノートページや履歴も参照してください。(2022年3月)

共鳴トンネルダイオード(きょうめいトンネルダイオード、: Resonant tunneling diode, RTD)は共鳴(英語版)状態を通じて特定のエネルギー準位をもつ電子正孔トンネル効果により伝導する、共鳴トンネリング構造を持つダイオードである。 負性抵抗領域のある電流電圧特性を持つことが多い。

トンネルダイオードは量子トンネル効果を利用する。トンネルダイオードの電流電圧特性の特徴は負性抵抗領域を持つことであり、独特なさまざまな用途に用いられる。薄膜越しの量子トンネリングは非常に速いプロセスであることから、高速動作が可能である。テラヘルツ領域で動作可能な発振器およびスイッチング素子への応用に向けた研究が盛んである[1]
概要共鳴トンネルダイオードの動作原理を表わす図と、負性抵抗領域をもつ電流電圧特性。印加電圧により共鳴状態の第一準位(バンド図中赤実線)とソースのフェルミ準位(バンド図中青線)が一致する点が電流電圧特性におけるピークにあたり、その右側には負性抵抗領域が見られる(左:バンド図、中:透過係数、右:電流電圧特性)。右図にみられる負性抵抗領域は、ソースのフェルミ準位と共鳴準位との相対位置により生じている。

RTDはIII-V族IV族II-VI族などさまざまな材料を用いて製造可能であり、通常のトンネルダイオードと同様の高濃度ドープpn接合、2重障壁、3重障壁、量子井戸量子細線などさまざまな共鳴トンネル構造がある。Si/SiGe バンド間共鳴トンネルダイオードは、その構造と製造プロセスから現行のCMOS技術およびSi/SiGeヘテロ接合バイポーラ技術への組み込みに適している。

RTDの代表例として、2つのごく薄いエネルギー障壁にはさまれた単一の量子井戸構造をもつものがあげられる。この構造は2重障壁構造と呼ばれる。電子や正孔などのキャリアは、井戸型ポテンシャルの項で説明されるように量子井戸中ではとびとびのエネルギー準位を持つ状態しかとることができない。

RTDの特徴の1つとして、右図にしめすとおり負性抵抗領域をもつことがあげられる。負性抵抗の表われる原理は#動作の項に示す。負性抵抗領域を持つ電子回路素子は一般に発振回路に利用することができるが、RTDはその高速動作性からテラヘルツ波発生器によく用いられる。

この構造は、分子線ヘテロエピタキシーにより成長させることができる。特によく用いられるGaAsおよび AlAsに加え、AlAs/InGaAsやInAlAs(英語版)/InGaAsも用いられる。

RTDを組み込んだ回路の動作は、ファン・デル・ポール方程式を一般化したリエナール方程式により記述することができる[2][3][4]
動作

下のプロセスは右図に示したものと同一である。障壁の数および量子井戸中の準位の数によっては、下のプロセスが繰り返される。
正性抵抗領域

バイアス電圧が低い場合、バイアス電圧が高まるにつれて量子井戸中の第一準位がソースのフェルミ準位に近づくため、電流は増加する。
負性抵抗領域

さらにバイアス電圧を高めると、量子井戸中の第一準位はエネルギー的に低くなっていき、バンドギャップ領域へと入っていくため、電流は減少する。この段階ではまだ、量子井戸中の第二準位はエネルギーが高すぎて伝導に寄与しない。
2番目の正性抵抗領域

最初の正性抵抗領域と同様に、量子井戸中の第二準位がソースのフェルミ準位に近づくにつれて、この準位を通じたトンネル電流が増加するため、総電流が再び増加する。
バンド内共鳴トンネリング2重障壁ポテンシャルに、障壁よりも低いエネルギーの粒子が左から入射するようす。

単一障壁を越える量子トンネリングでは、透過係数(英語版)すなわちトンネリング確率は、入射粒子のエネルギーが障壁の高さよりも低い場合つねに1よりも小さい。2つの障壁が互いにごく近くに存在するポテンシャル構造を考えると、その透過係数はさまざまな標準的手法をもちいて(入射粒子エネルギーの関数として)算出することができる。

2重障壁を越えるトンネリングは、1951年にデヴィッド・ボームによりWKB近似の下で初めて解かれた。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:43 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef