共円四辺形
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "円に内接する四角形" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2022年11月)
円に内接する四角形の例

円に内接する四角形(えんにないせつするしかっけい、: cyclic quadrilateral)または単に内接四角形(ないせつしかっけい、: inscribed quadrilateral)とは、4頂点が1つの円周上にある四角形のことである[1]。この円のことを外接円といい、その上にある4頂点は共円であるという。一般的に、内接四角形はであると仮定されるが、四角形が自己交差することを許せば凸でない内接四角形も存在する。以下では凸四角形に限って述べることとする。

すべての三角形が外接円を持つのに対して、すべての四角形が外接円を持つとは限らない。たとえば、正方形でない菱形は内接四角形ではないが、正方形・長方形等脚台形・反平行四辺形(英語版)はすべて内接四角形である。凧形が内接四角形となるための必要十分条件は、それが二つの直角を持つことである(直角凧形)。双心四角形は内接四角形であり、かつ外接四角形(英語版)でもある。傍双心四角形(英語版)は内接四角形であり、かつ傍接四角形(英語版)でもある。調和四角形(英語版)は内接四角形であって対辺の長さの積が等しいものである。
特徴付け四角形ABCDは内接四角形である

凸四角形が内接四角形であるための必要十分条件は四つある辺の垂直二等分線共点となる(つまり一点で交わる)ことである。このとき共有される点は外心と呼ばれる[2]

凸四角形 □ABCD が内接四角形となるための必要十分条件は、その向かい合う角が互いに補角となることである。式で書けば、四つの角が隣り合う順に α, β, γ, δ の角度を持つとすれば α + γ = β + δ = π ( = 180 ∘ ) {\displaystyle \alpha +\gamma =\beta +\delta =\pi \;(=180^{\circ })} と書ける[2]。直接の定理はエウクレイデス『原論』第3巻の命題22[3]であるが、同値な言い換えとして、凸四角形が内接四角形となるための必要十分条件は、その各外角内対角に等しいことである。

凸四角形 □ABCD が内接四角形となる別の必要十分条件は、ひとつの辺と一方の対角線との間の角が対辺と他方の対角線との間の角に等しいことである[4]。つまり例えば ∠ A C B = ∠ A D B {\textstyle \angle ACB=\angle ADB} のときはそうである。

トレミーの定理の述べるところは、内接四角形のふたつの対角線の長さ e, f の積は、二組ある対辺の長さの積の和に等しいことである。式では e f = a c + b d {\displaystyle ef=ac+bd} と書ける[5]:25。逆もまた成り立ち、この式を満たす凸四角形は内接四角形となる。

二つの直線があり、一方が線分 AC を他方が線分 BD を含み、点 P で交わるとする。このとき四点 A, B, C, D が共円となるための必要十分条件は、線分の長さについて A P ⋅ P C = B P ⋅ P D {\displaystyle AP\cdot PC=BP\cdot PD} が成り立つことである[6]:179。このとき、交点 P は四点が存在する円の内部にも外部にも位置しうる。前者の場合では □ABCD が内接四角形となり、後者の場合では □ABDC が内接四角形を成す。また前者の場合において上記の等式は、一方の対角線を P で分割して得られる線分の長さの積が他方のそれと等しいことを述べるものとなる。このことは、この内接四角形の対角線が外接円の弦であることから交弦定理(英語版)と呼ばれる。

もっとほかの特徴づけとして、凸四角形 □ABCD が内接四角形となるための必要十分条件は tan ⁡ α 2 tan ⁡ γ 2 = tan ⁡ β 2 tan ⁡ δ 2 = 1 {\displaystyle \tan {\frac {\alpha }{2}}\tan {\frac {\gamma }{2}}=\tan {\frac {\beta }{2}}\tan {\frac {\delta }{2}}=1} が成り立つことである[7]

面積公式


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:84 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef