光波測距儀
[Wikipedia|▼Menu]
レーザー測距装置(右手)を使用する女性

光波測距儀(こうはそっきょぎ、: electro-optical distance measuring instrument)とは、主にレーザーを用いて距離を測定する装置を言う。光を用いることから、悪天候の影響を受けやすい弱点があるが、レーザーの高い指向性により、比較的近距離の対象に対して、電波測距儀よりも高い精度で測定ができる[1]

光波測距儀の考え方は、アルマン・フィゾーの光速測定実験に始まると言える[2]
方式
位相差方式

位相差の動作原理は、測距儀から測点に設置した反射プリズム(コーナーキューブ、ミラーとも呼ばれる)に向けて一定の周期で明滅する強度変調した光波を発射し、反射プリズムで反射した光波を測距儀が感知するまでに明滅した回数から距離を得る、というものである[3]

実際には外部のプリズムからの反射光と参照した内部の信号との位相のずれを検出する。但し、位相のずれは360°毎に0になるので明滅周波数を対象の測定距離に応じて切り替える必要がある。明滅周期が高い程、精度は上がるものの、前述の理由により位相のずれが0になるので通常は複数の周波数を切り替える。内部の信号は分周期で分周し、外部からの信号は電気信号に変換してから増幅してスーパーヘテロダインと同様にダブルバランスドモジュレーターで内部の基準信号と重ねて中間周波数(唸り)[4]を出力する。これには位相成分が残されているので分周した信号と比較して位相のずれを検出する。中間周波数を利用するのは周波数が低い方が高増幅率のトランジスタが使用でき信号/雑音比を大きくすることができるため、信号として扱いやすいからである。

光の変調にはケルセルが使用されていたが耐久性等に問題があるため、現在では直接光源を変調する。光源として発光ダイオードを用いる物とレーザー光を用いるものがある。後者は直進性に優れるため長距離、高精度の測定に用いられる。また、射撃照準にも用いられる。近年は普及型の測距計にもレーザー式が一般化している。
パルス方式

物体に向けて短パルスを放射し、パルスを放ってから戻ってくるまでの時間から距離を求める。光源にはレーザーを用いる。

距離を計測するだけでなく水平角度、垂直角度を計測する経緯儀としての能力を持った測距儀はトータルステーションとも呼ばれる。光波の他に電波を利用した電波測距儀がある。こちらは、測定距離が十数キロメートルと長い場合に利用する。ただし、光波測距儀に比べて測定精度は落ちる。光波測距儀でも計測できないほど測定距離が長い、精度が欲しい、若しくは測点との目視ができない場合はGPS測量機を利用した測距を行う。
トータルステーションシステムトータルステーションシステムの一例。LIDARによって周囲の地形をスキャンし、3Dモデルを生成することができる。頭部が水平方向に回転しつつ、内部の鏡が垂直方向に回転する。

光波測距儀やGPS測量機の中にはマイコンオペレーティングシステムを搭載し遠隔操作による無人計測や計測した測点を記憶して様々な測量計算を行ったり、PC等に転送する機能を持つものがある。これらはトータルステーションシステムと呼ばれ従来の路線測量やアリダードを用いた平板測量、土量計算の効率化に貢献している。
測定可能距離

理論的には見渡せる距離で反射光が戻ってくる距離であれば月レーザー測距実験のような他天体や地球周回軌道を周回する測地衛星のような超長距離でも可能であるが、地上では光束は収束しているにもかかわらず大気の揺らぎや空気中の微粒子によってレーザー光でも長距離で拡散するため、地球の丸みによって測定可能な距離のおよそ半分とされる。
レーザー衛星測距

あじさい (人工衛星)LRELARESにはコーナーキューブが搭載されていてレーザーを照射して距離を測定して測量に役立てる[5]。また、一般相対性理論の現象で検証が困難なため、長らく検証されてこなかったレンス・ティリング効果の計測という目的でも使用され[6][7]、I CiufoliniとE C Pavlisは、レーザー測距装置を用いてNASAの2つの衛星LAGEOSとLAGEOS2の軌道を11年にわたり数mmの精度で記録することにより、この引きずり効果を観測したことで衛星の位置が毎年3 m以下の距離だけずれていくことが判明した[8]


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:28 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef