光子
[Wikipedia|▼Menu]

光子
レーザーからのコヒーレントビームで放出される光子
組成素粒子
グループゲージ粒子
相互作用電磁力
理論化アルベルト・アインシュタイン
記号γ, hν または ħω
質量0
<1×10?18 eV/c2[1]
平均寿命Stable[1]
電荷0
<1×10?35 e[1]
スピン1
パリティ−1[1]
Cパリティ−1[1]
凝縮対称性I(JPC)=0,1(1−−)[1]
テンプレートを表示

光子(こうし、(記号: γ[注 1])またはフォトン(英語: photon)とは、光の粒子である。物理学における素粒子の一つであり、を含む全ての電磁波量子かつ電磁力の媒介粒子(英語版)である。光量子(こうりょうし、(英語: light quantum)とも呼ばれる[注 2]
概要

古代から、光の本性については「光の波動説」と「光の粒子説」の2つが存在し、長い間にわたって対立していた。19世紀末ごろに電磁場に対するマックスウェルの理論ハインリヒ・ヘルツによって検証され、光の波動説は確立された。しかし、光の波動性は黒体放射のエネルギー分布を説明することができなかった。そのため、マックス・プランクは物質のエネルギー吸収・放出の性質としてエネルギー量子の概念を発表した。

ドイツの物理学者のアルベルト・アインシュタインは、光の波動説を支持しつつ、新しい光の粒子説(光量子仮説)を主張した[2]

アメリカの物理化学者ギルバート・ニュートン・ルイスは古典的な光の粒子説を採用した上で、アインシュタインと同種の領域で内容的に異なる具体的な研究成果を上記研究に1年遅れて発表した。

それぞれ微妙に異なる光の本性に関する研究が平行していたが、第一次世界大戦を経た1920年代に入ると、アーサー・コンプトンによるコンプトン効果の研究に端を発して、1926年から1927年頃にかけて、それら二つの系統は光子(photon)という名称で一応の統一がなされた[注 3][注 4]

量子論では光子は「ボース粒子」と呼ばれる分類の量子である。
物理的性質

マイケルソン・モーリーの実験によれば、真空中の光速は c である。電磁波の放射圧は、単位時間単位面積当たりの光子の運動量の転移に由来する[3]

光子は常に真空中の光の速度と同じ速度で動く。

光線中の振動数 ν の光子に対して、以下のようにエネルギー ε と運動量 p を定義することができる。これは、外部光電効果コンプトン効果の実験結果により確認されている。 ϵ = h ν , p = h ν c {\displaystyle \epsilon =h\nu \;\;,\;\;p={\frac {h\nu }{c}}}

またルイスによれば、光子の静止質量 mrestは0である。
素粒子論における物理的性質

光子は電荷を持たない[4]。質量はゼロであり、寿命は無い。光子は2次元の偏光状態を持つ。波数ベクトルの成分は、波長λとその伝播方向を決定する。光子は電磁気のゲージ粒子であり[5]、そのため光子のその他の量子数レプトン数バリオン数フレーバー量子数)はゼロである[6]

光子は様々な自然過程で放出される。例えば、あらゆる物体は熱放射により、常に光子を放出し続けている。また、電荷が加速されるとシンクロトロン放射を発する。分子原子原子核が低いエネルギー準位に遷移すると、赤外線からガンマ線まで様々なエネルギーの光子が放出される。粒子とその反粒子対消滅する時にも光子が発生する(例えば電子-陽電子対消滅)。

光子は、周波数とは独立なスピン角運動量も運ぶ[7]。スピンの大きさは 2 ℏ {\displaystyle \scriptstyle {{\sqrt {2}}\hbar }} で、運動の方向に沿って測定される成分であるヘリシティーは±?である。二つのヘリシティーの値は右巻き、左巻きと呼ばれ、光子の2つの円偏光の状態に対応する[8]

空間で粒子と反粒子が対消滅すると、少なくとも二つの光子が生成される[注 5]。別の見方をした場合、光子は自身の反粒子と考えることもできる。逆過程の対生成は、ガンマ線等の高エネルギーの光子が物質の中を進む間にエネルギーを失う過程である[9]。この過程は、原子核の電磁場で「一つの光子を生み出す対消滅」の逆過程である。
光子の質量に関する仮説

光子は、現在では厳密に質量ゼロと理解されているが、ごくわずかな質量をもつ可能性は残されている。もし光子の質量が厳密にゼロでなければ、光の速さは光速cよりも少しだけ遅くなるはずである。この場合、光速cは、全ての物体が理論的に超えられない最高速度ということになるが、相対性理論は影響されない[10]

光子に質量があると仮定すると、クーロンの法則が修正され、電磁場は余分な物理学的自由度を持つことになる。クーロンの法則が完全な真でなければ、外部電磁場に晒される中空導体の内部に電磁場が発生することになる[11]。ただし、クーロンの法則は非常に高い確度を持つことが確認されており、もし光子に質量があるとしても、その上限は m ? 10?14 eV/c2の範囲である[12]

銀河の磁位ベクトルの効果を検出することで、さらに精度の良い上限値を得ることができる。銀河の磁場は非常に遠くまで届くため、その磁位ベクトルは巨大であるが、光子の質量がゼロであれば磁場のみが観測される。もし光子が質量を持てば、質量項は銀河のプラズマに影響を与えるはずである。そのような効果は検出されていないことから、光子の質量の上限はm < 3×10?27 eV/c2と示唆される[13]。銀河の磁位ベクトルは、帯磁環のトルクを測定することで直接検出することが可能である[14]。そのような方法を用いて、パーティクルデータグループにより10?18 eV/c2(原子質量単位の1.07×10-27倍に相当)という上限値が得られた[15]

銀河の磁位ベクトルを用いた質量上限の推定は、モデルに依存することが示されている[16]。光子の質量がヒッグス機構によって生み出される場合は、クーロンの法則が正当化され、上限値はm ? 10?14 eV/c2となる。

超伝導体中の光子は、ゼロではない有効質量を持ち、その結果、電磁力の届く範囲は超伝導体中の短い範囲になる[17]。「超新星/加速探査機」も参照


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:79 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef