仮想化
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "仮想化" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2023年11月)
QEMU

仮想化(かそうか、英語: virtualization)とは、コンピュータリソース抽象化することであり、ソフトウェアと物理的なハードウェアの間に抽象化されたレイヤーを提供することで、コンピュータリソースを管理するための様々な技術である。仮想化ソフトウェアを実行しているマシンは、さまざまなオペレーティングシステム(OS)で実行されているアプリケーションを管理できる。サーバー、ストレージデバイス、ネットワークリソースなどのハードウェアプラットフォームをソフトウェアで効果的にエミュレートまたはシミュレートする[1]。一言で言えば、WindowsなどのOS内で別のOSを使用すること。

主にユーザーに提供するコンピュータそのものをハードウェアの詳細から切り離した状態でソフトウェア化する事を指す。ユーザーは画面切り替えの要領で複数のコンピュータを使い分けられる。管理者にとっては、ユーザーに提供するコンピュータに関わる全ての作業をソフトウェアの設定変更のみで行えるようになり、構成変更に掛かる時間が劇的に短縮されるため、物理的な作業では対応できないような管理を行う事が出来るようになる。ソフトウェア化したコンピュータを仮想マシン、仮想マシンを実際に稼動させるハードウェアを物理マシンと呼ぶ。仮想マシンは別の物理マシン上にデータ移動のみで移す事が出来るため、USBメモリなどにも収められる。

「リソースの物理的特性を、そのリソースと相互作用するシステム/アプリケーション/エンドユーザーから隠蔽する技法。単一の物理リソース(サーバ、OS、アプリケーション、補助記憶装置など)を複数の論理リソースに見せかけたり、複数の物理リソース(複数の補助記憶装置群やサーバ群)を単一の論理リソースに見せかけたりできる」という実用的定義がある[2]。また、単一の物理リソースを何らかの特性の異なる単一の論理リソースに見せかけることもできる。そして、仮想回線により、幅が拡がる。
概要

仮想化という用語の起源は古く、1960年代には既に広く使われていた。ネットワーク全体や個々の機能やコンポーネントなど、コンピューティングの様々な面に適用されてきた。仮想化技術に共通する目的は、カプセル化によって「技術的詳細を隠蔽する」ことである。仮想化は、例えばアクセスを多重化したり、異なる物理的位置にあるリソースを統合したり、制御システムを単純化したりすることで、根底にある実装を隠蔽した外部インタフェースを生成する。近年、新たな仮想化基盤や仮想化技術が登場し、この円熟した概念が再び注目されるようになってきた。

抽象化オブジェクト指向などの用語と同様、「仮想化」という用語は様々な文脈で用いられる。本項では、これを主に以下の2つに分類して解説する。
プラットフォーム仮想化
コンピュータ全体のシミュレーション
リソース仮想化
リソースの集合体や部分や単純化されたもののシミュレーション

もちろん、仮想化はコンピュータ以外でも重要な概念である。制御システムは複雑な機器の仮想化されたインタフェースを実装したものとも言える。例えば、最近の自動車のアクセルは単にエンジンへの燃料流入量を増やすだけではない。フライ・バイ・ワイヤを使った航空機は、物理的実装よりも単純化されたインタフェースを提供する。

ビジネス構造の観点では、仮想化とは、従来型の事務所や店舗を構えたビジネスから、インターネット上などでビジネスを行う方向に転換していくことを指す。

仮想化と対極に位置する概念が透過性である。仮想化されたオブジェクトは物理的には存在しなくともアクセス可能である。逆に透過性のあるオブジェクトは物理的には存在しているが、利用者にとっては不可視である。
デザインパターンとして

多くの仮想化の形態は、利用者と提供者に関わるデザインパターンでパターン化可能である。利用者と提供者は何らかのインタフェースを使って相互作用する。仮想化は、この両者の間に介在し、利用者に仮想化されたインタフェースを提供すると同時に、提供者にも別の形で仮想化されたインタフェースを提供する。一般に、利用者と提供者の関係は一対多、あるいは多対一、または多対多であり、中間層(仮想化層)だけがその多重性を意識している。

理想的には、仮想化されていない環境で直接やり取りしている利用者と提供者は、仮想化された環境でも修正することなくそのまま機能するのが望ましい。例えば、仮想記憶では物理アドレス空間と利用者の間に中間層(仮想記憶管理層)が存在する。その中間層は複数の利用者をサポートするため、複数の仮想アドレス空間を提供する。利用者と提供者(物理メモリ)は一般にその多重性に気づく必要はない。
プラットフォーム仮想化

1960年代に生まれた「仮想化」という用語は、ハードウェアとソフトウェアの組合せによって実現された仮想機械の登場とともに使われるようになった。同時期にリソース仮想化である仮想記憶も登場している。仮想機械という用語は IBM M44/44X という実験機で初めて使われている。それ以前に IBM CP-40 が仮想機械を実装しており、このときは pseudo machines(擬似機械)と呼ばれていた。「仮想化」にしても「仮想機械」にしても、その意味は時代と共に変化していった。

プラットフォーム仮想化とは、ハードウェアプラットフォーム上でホストプログラム(制御プログラム)が擬似的なコンピュータ環境を生成し、ゲストソフトウェアに対して「仮想機械」を提供するものである。ゲストソフトウェアは、それ自体もオペレーティングシステムであるのが一般的で、あたかも独立したハードウェアプラットフォームにインストールされたかのように動作する。単一の物理マシン上で複数の仮想機械をシミュレート可能なことが多く、仮想機械の個数はホストであるハードウェアリソースによって制限される。ゲストOSとホストOSは一般に同一である必要はない。ゲストシステムは特定の周辺機器(ハードディスクドライブネットワークカード)へのアクセスを必要とすることが多く、その場合その機器とゲストのインタフェースを提供する必要がある。

プラットフォーム仮想化の手法はいくつか存在する。以下にそれらを列挙する。
エミュレータまたはシミュレータ
仮想機械によってハードウェア全体を擬似的に再現する。全く異なるアーキテクチャのハードウェア向けのゲストOSを修正することなしに動作させることができる。これは、新たなCPUなどのハードウェア開発が完了する前にソフトウェアを並行して開発する手法として使われてきた。具体例としては、BochsPearPCVirtual PCの PowerPC 版、QEMU、Hercules emulator(IBMのメインフレームのエミュレータ)などがある。エミュレーションのための技法は様々で、有限オートマトンを使った技法から、仮想化プラットフォーム上での動的再コンパイル技法まである。
ネイティブ仮想化
同じアーキテクチャのプラットフォーム上で、ゲストOSを隔離された状態で、かつ無修正で動作させる仮想機械。この手法は IBM CP-40 などが起源とされる。メインフレーム以外の領域では、Parallels WorkstationParallels DesktopVirtualBoxVirtual PCVMware WorkstationVMware ServerQEMUAdeosMac-on-Linux、VirtualLogix VLX Virtualizer for VT などがある。
ハードウェアによる仮想化
ゲストOSにハードウェアリソースを割り当て、隔離された状態で動作できるようにする仮想機械。2005年と2006年、インテルAMDは仮想化をサポートする追加ハードウェアを提供した。例えば、VMware Fusion、VMware Workstation、Parallels DesktopParallels Workstationなどがある。
部分仮想化
特にアドレス空間などのハードウェア環境に限って、複数の実体があるようにシミュレートする仮想機械。いわゆる仮想記憶である。プロセスが同時並行して動作できるようにするが、ゲストOSが動作することはできない。一般に仮想機械とは見なされないが、仮想化の歴史上は重要であり、CTSS や IBM M44/44X などで使われ、MVS へと受け継がれた。その後の Microsoft WindowsLinux も、基本的にこの手法を採用している。
準仮想化


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:35 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef