付加反応
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "付加反応" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2019年7月)
エチレンへの塩素の付加

付加反応(ふかはんのう、英語: Addition reaction)とは多重結合が解裂し、それぞれの端が別の原子団と新たな単結合を生成する反応である。

大きく分けて、アルケンのブロモ化を代表とする求電子付加反応(AdE)と、カルボニルとグリニャール試薬との反応を代表とする求核付加反応(AdN)に区分されるが、この他に非極性付加反応のラジカル付加がある。

炭素化合物では三重結合で最も起きやすく、二重結合がそれに次ぐ。これは三重結合の結合エンタルピーが小さいためである。

付加反応の生成物は 付加体 と呼ばれる。
求電子付加反応「求電子付加反応」も参照

反応機構的には二重結合(ないしは三重結合)のπ電子にカチオン種が付加し、次いで生成したカルボカチオン(C+)をアニオン種が攻撃して付加反応が終結する。生成物の立体化学的考察より、多くの場合、二重結合平面に対してカチオン種とアニオン種がトランス方向(anti-periplaner方向)から付加することが確認されており、遷移状態は非古典式カルボカチオン(non-classical catbocation)を経由していると考えられている。また反応によっては古典式カルボカチオン(classical catbocation)を経由している場合もある。

求電子的付加反応の生成する異性体に関して、マルコフニコフ則とザイツェフ-ワグナー則が知られている。両者とも実験からの経験則で、次に示す。

マルコフニコフ則:"HX付加の場合、置換基の多い側にXが付加する"

ザイツェフ-ワグナー則:"両炭素の置換基数が同等のオレフィンへのHX付加の場合、XはCH3-基が置換している方、あるいは末端に近いほうの炭素に付加する"

これらの法則は、遷移状態のカルボカチオンのうち、置換基のI効果によりδ+の電荷が安定化されるほうにX-が攻撃するためであると理解されている。カルボカチオンの安定化は芳香環による共鳴、水素原子による超共役によっても引き起こされる。

求電子付加の例[1]付加試薬付加される化合物生成物
H3O+R2C=CR2R2C(H)-(HO)CR2
H2SO4R2C(H)-(OSO3H)CR2
X2R2C(X)-(X)CR2
X2, H3O+R2C(X)-(HO)CR2
HXR2C(X)-(H)CR2
NOClR2(NO)-(Cl)CR2

求核付加反応「求核付加反応」も参照

有機電子論的にはカルボニルは電子の「立ち上がり」の寄与があるため、Cがδ+、Oがδ?であると考えられる。それに対して有機金属試薬が攻撃すると、アルキルカルボアニオン種がCへ、金属カチオン種がOに付加する(最終的に金属カチオン種はプロトンと置換されて-OHとなる)。

求核付加の例[1]付加試薬付加される化合物生成物
グリニャール試薬R2C=OR2C(-OMg)-アルキル
OH-, H2OR2C(-OH)2
OH-, H2ORC≡NRCOO-
H2SR<C(=S)NH2
CN-, ROHR2C=OR2C(-OH)-CN

脚注^ a b C. K. Ingold, "Structure and Mechanism in Organic Chemistry". 2nd. Ed., pp 249.

関連項目

脱離反応

外部リンク

『付加反応
』 - コトバンク

典拠管理データベース: 国立図書館

ドイツ

イスラエル

アメリカ

チェコ


記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:7880 Bytes
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef