二乗平均平方根
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "二乗平均平方根" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2023年1月)

二乗平均平方根(にじょうへいきんへいほうこん、: root mean square、RMS)とは、データ確率変数二乗した値の算術平均平方根である。結果として単位が元の統計値・確率変数と同じという点が特徴である。また、絶対値の平均よりも計算が積和演算であるため高速化が容易であることが挙げられる。

変量 x のデータ xi (i = 1, 2, …, n) に対して、x の二乗平均平方根 RMS(x) は次の式で定義される: RMS ⁡ [ x ] = 1 n ∑ i = 1 n x i 2 {\displaystyle \operatorname {RMS} [x]={\sqrt {{\frac {1}{n}}\textstyle \sum \limits _{i=1}^{n}{x_{i}}^{2}}}}

つまり、xi2 の算術平均の平方根が x の二乗平均平方根 RMS[x] となる。

例えば、データ 1, 1, 2, 3, 5 の二乗平均平方根は次のようになる。 RMS ⁡ [ x ] = 1 5 ( 1 2 + 1 2 + 2 2 + 3 2 + 5 2 ) = 8 ≈ 2.8284271 {\displaystyle {\begin{aligned}\operatorname {RMS} [x]&={\sqrt {{\frac {1}{5}}\left(1^{2}+1^{2}+2^{2}+3^{2}+5^{2}\right)}}\\&={\sqrt {8}}\approx 2.8284271\end{aligned}}} //

統計値の二乗を取ることで、その量の大きさの平均値を二乗平均平方根から概算することができる。また、強度電磁場の二乗としてしばしば定義されるため、その平均強度は二乗平均平方根の形を取る。時間的に変化する信号の大きさを評価する目的で、物理学電気工学などの分野で二乗平均平方根が用いられる。

二乗平均平方根は、一般化平均において指数パラメータを 2 としたものであるとも言える。
定義

大きさ n のデータ x1, x2, …, xn に対して二乗平均平方根は RMS ⁡ [ x ] = 1 n ∑ i = 1 n x i 2 = x 1 2 + x 2 2 + ⋯ + x n 2 n {\displaystyle \operatorname {RMS} [x]={\sqrt {{\frac {1}{n}}\textstyle \sum \limits _{i=1}^{n}{x_{i}}^{2}}}={\sqrt {\frac {{x_{1}}^{2}+{x_{2}}^{2}+\cdots +{x_{n}}^{2}}{n}}}}

定義される。

充分小さな Δx′ に対して x ∈ [x', x + Δx′] となる確率を f(x)Δx′ としたとき、x の二乗平均平方根 RMS[x] は RMS ⁡ [ x ] = ∫ − ∞ ∞ x ′ 2 f ( x ′ ) d x ′ {\displaystyle \operatorname {RMS} [x]={\sqrt {\int _{-\infty }^{\infty }x'^{2}f(x')dx'}}}

と定義される。ここで関数 f(x') は確率密度関数と呼ばれる。

連続関数 x(t) の区間 t ∈ [t1, t2] (t1 < t2) については媒介変数積分を用いて、 RMS ⁡ [ x ( t ) ] = 1 t 2 − t 1 ∫ t 1 t 2 ( x ( t ) ) 2 d t {\displaystyle \operatorname {RMS} [x(t)]={\sqrt {{\frac {1}{t_{2}-t_{1}}}\int _{t_{1}}^{t_{2}}(x(t))^{2}\,dt}}}

と定義される。
計算例「三角関数の公式の一覧」および「フーリエ級数」も参照

周期関数については通常、積分区間を周期の整数倍に一致させて求める。たとえば x(t) = sin(ωt) については、周期を τ = .mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num,.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0 0.1em}.mw-parser-output .sfrac .den{border-top:1px solid}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}2π/ω で表し、 RMS ⁡ [ sin ⁡ ω t ] = 1 τ ∫ 0 τ sin 2 ⁡ ω t d t = 1 τ ∫ 0 τ 1 − cos ⁡ 2 ω t 2 d t = 1 2 {\displaystyle \operatorname {RMS} [\sin \omega t]={\sqrt {{\frac {1}{\tau }}\int _{0}^{\tau }\sin ^{2}\omega t\,dt}}={\sqrt {{\frac {1}{\tau }}\int _{0}^{\tau }{\frac {1-\cos 2\omega t}{2}}\,dt}}={\frac {1}{\sqrt {2}}}}

のようにする。同様に三角関数の和について、適当な周期を τ として、 RMS ⁡ [ ∑ n c n sin ⁡ ω n t ] = 1 τ ∫ 0 τ ( ∑ n c n sin ⁡ ω n t ) 2 d t = 1 τ ∑ m , n ∫ 0 τ c m c n sin ⁡ ( ω m t ) sin ⁡ ( ω n t ) d t = 1 τ ∑ m , n ∫ 0 τ c m c n cos ⁡ ( ω m t − ω n t ) − cos ⁡ ( ω m t + ω n t ) 2 d t = 1 2 ∑ n ( c n ) 2 {\displaystyle {\begin{aligned}\operatorname {RMS} \left[\sum _{n}c_{n}\sin \omega _{n}t\right]&={\sqrt {{\frac {1}{\tau }}\int _{0}^{\tau }\left(\sum _{n}c_{n}\sin \omega _{n}t\right)^{2}\,dt}}\\&={\sqrt {{\frac {1}{\tau }}\sum _{m,n}\int _{0}^{\tau }c_{m}c_{n}\sin(\omega _{m}t)\sin(\omega _{n}t)\,dt}}\\&={\sqrt {{\frac {1}{\tau }}\sum _{m,n}\int _{0}^{\tau }c_{m}c_{n}{\frac {\cos(\omega _{m}t-\omega _{n}t)-\cos(\omega _{m}t+\omega _{n}t)}{2}}\,dt}}\\&={\sqrt {{\frac {1}{2}}\sum _{n}(c_{n})^{2}}}\end{aligned}}}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:31 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef