中和抗体
[Wikipedia|▼Menu]

中和抗体標準的な抗体の図示。
特徴
Protein Type免疫グロブリン
Function抗原の中和
ProductionB細胞[1][2]
テンプレートを表示

中和抗体(ちゅうわこうたい、: neutralizing antibody, NAb)は、病原体や感染性粒子が細胞に対して及ぼす生物学的な影響を中和して、細胞を防御する抗体である。中和によって病原体や感染性粒子は感染性や病原性を失う[3]。中和抗体は、ウイルス細胞内細菌、微生物毒素(英語版)に対する適応免疫系体液性応答の一部である。中和抗体は、感染性粒子の表面構造(抗原)に特異的に結合することで、宿主細胞が感染して破壊する可能性のある相互作用を防ぐ。中和抗体による免疫は、感染が起こる前に免疫系が感染粒子を排除するため、殺菌免疫(: sterilizing immunity)としても知られている[4]
機構抗原を抗体で覆うことで、感染力が弱くなり、病原性が低くなる。右の図では、中和抗体(青)がウイルス(緑)と結合することで、細胞内(赤)へのウイルスの侵入を防いでいる。

ウイルス粒子や細胞内細菌は、細胞内に侵入するために、それ自身の表面にある分子を利用して標的細胞の細胞表面受容体と相互作用し、細胞内に侵入して複製サイクルを開始する[5]。中和抗体は、病原体と結合して感染性を阻害し、細胞内への侵入に必要な分子を遮断できる。これは、病原体や毒素が宿主細胞の受容体に付着することに対して、抗体が静的に干渉することに起因する。ウイルス感染の場合、中和抗体(NAb)は、エンベロープ型ウイルスの糖タンパク質または非エンベロープ型ウイルスのカプシドタンパク質に結合することができる。さらに、中和抗体は、粒子が細胞内への侵入を成功させるためにしばしば必要とされる構造変化を防ぐように作用することができる。たとえば、中和抗体は、宿主細胞への侵入に必要な膜融合を媒介するウイルスタンパク質構造変化を防ぐことができる。場合によっては、抗体が解離した後でもウイルスは感染できないことがある。病原体-抗体複合体は、最終的にはマクロファージに取り込まれ、分解される[6]

中和抗体は、細菌毒素の毒性作用を中和する上でも重要である。中和抗体の例としてはジフテリア抗毒素があり、これはジフテリア毒素の生物学的効果を中和することができる[7]。抗体が結合しても細菌の複製を妨げないため、中和抗体は細胞外細菌に対しては有効ではない。ここで、免疫系は、オプソニン化補体活性化など、抗体の他の機能を利用して細菌を殺す[8]
中和抗体と結合抗体の違い

病原性粒子に結合するすべての抗体が中和抗体であるわけではない。非中和性抗体(すなわち結合抗体)は、病原体に特異的に結合するが、病原体の感染性を妨げることはない。これは、適切な領域に結合しないことが原因となる可能性がある。非中和抗体は、粒子にフラグを立て、それが標的化されたことを免疫細胞に対して知らせるため重要な役割を果たす。その後、粒子は処理されて、その結果、動員された免疫細胞によって破壊される[9]。一方、中和抗体は、免疫細胞を必要とせずに抗原の生物学的効果を中和することができる。場合によっては、ウイルス粒子に結合している非中和抗体または不十分な量の中和抗体が、宿主細胞への取り込みを容易にするために、いくつかのウイルス種によって利用されることがある。この機構は、抗体依存性感染増強として知られている[10]。これはデングウイルスジカウイルスで観察されている[11]
産生「B細胞」も参照

抗体はB細胞によって産生および分泌される。B細胞が骨髄で産生されると、抗体をコードする遺伝子がランダムな遺伝的組み換え(V(D)J遺伝子再構成)を受け、その結果、すべての成熟B細胞が抗原結合領域(英語版)のアミノ酸配列が異なる抗体を産生する。したがって、すべてのB細胞は、異なる抗原に特異的に結合する抗体を産生する[12]。抗体レパートリーに強い多様性があることで、免疫系はさまざまな形態や大きさの病原体を認識することができる。感染時には、病原性抗原に高い親和性で結合する抗体のみが産生される。これは、単一のB細胞クローンのクローン選択によって実現される。B細胞は、自然免疫応答の一部として感染細胞から放出されるインターフェロンを感知して感染部位に動員される。B細胞は、細胞膜に固定された抗体にすぎないB細胞受容体を細胞表面に呈示する。B細胞受容体が高親和性の同種抗原と結合すると、細胞内シグナル伝達カスケードが誘発される。抗原への結合に加えて、病原体に対する免疫系の細胞応答の一部として、B細胞はヘルパーT細胞によって産生されるサイトカインにより刺激されることも必要である。B細胞が完全に活性化されると、B細胞は急速に増殖して形質細胞に分化する。その後、形質細胞は抗原特異的抗体を大量に分泌する[13]。ワクチン接種や自然感染によって抗原に最初に遭遇した後、免疫学的記憶により、ウイルスへの次の曝露の後に中和抗体をより迅速に産生することが可能になる。
ウイルスの中和抗体回避

ウイルスはさまざまな機構を使って中和抗体を回避する[14]。ウイルスのゲノムは高率で変異する。ウイルスが中和抗体を回避することを可能にする変異が選択され、それにより優勢になる。逆に、抗体は免疫応答の過程で親和性成熟によって同時に進化し、それによってウイルス粒子の認識を向上させる。ウイルス機能において中心的な役割を果たすウイルスタンパク質の保存された部分は、時間の経過とともに進化する可能性が低く、したがって抗体結合に対してより脆弱である。しかし、ウイルスはこれらの領域に抗体が立体的にアクセスするための特定の機構を進化させており、結合を困難にしている。表面構造タンパク質の密度が低いウイルスは、抗体が結合しにくい。一部のウイルス糖タンパク質は、N-およびO-結合型グリカンによって高度にグリコシル化され、いわゆるグリカンシールドが形成される。これにより、抗体結合親和性を低下させ、中和抗体の回避が促進される可能性がある。ヒトエイズの原因であるHIV-1は、この両方の機構を利用している[15][16]
中和抗体の医学的使用

中和抗体は受動免疫に用いられ、健康な免疫系を持っていなくても患者へ使用することができる。20世紀初頭は、感染した患者に抗血清を注射していた。抗血清は、感染病原体に対するポリクローナル抗体を含む、以前に感染して回復した患者の血清である。これにより、抗体がウイルス感染症や毒素に対する効果的な治療法として利用できることを示している[17]。血漿中の抗体は精製も標準化もされておらず、血漿はドナーによって拒絶される可能性があるため、抗血清は非常に粗雑な治療法である[18]。また、回復した患者からの提供に依存しているため、簡単にスケールアップすることはできない。しかし、血清療法は比較的迅速に入手できるため、今日でも発生時の最初の防衛線として使用されている[19][20]。血清療法は、2009年の豚インフルエンザ世界的流行[21]や、西アフリカエボラ出血熱流行[22]の時に、患者の死亡率を減少させることが示された。また、COVID-19の見込みのある治療法として試験が行われている[23][24]。健康な人から得られた抗体の混合物を使用する免疫グロブリン療法は、感染症と戦うために免疫不全または免疫抑制された患者に投与される。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:51 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef