不定積分
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "不定積分" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2015年9月)

関数の不定積分(ふていせきぶん)という用語には次に挙げる四種類の意味で用いられる場合がある。
(逆微分) 0)
微分の逆操作を意味する:すなわち、与えられた関数が連続であるとき、微分するとその関数に一致するような新たな関数(原始関数)を求める操作のこと、およびその原始関数の全体(集合)[注 1]を 逆微分(antiderivative)と言う(積分定数は無視する)。
(積分論) 1)
一変数関数 f(x) に対して、定義域内の任意の閉区間 [a, b] 上の定積分が F(b) ? F(a) に一致する関数 F(x) を関数 f(x) の 不定積分 (indefinite integral) と言う。
(積分論) 2)
一変数関数の定義域内の定数 a から変数 x までの(端点が定数でない)積分で与えられる関数を関数 f(x) の a を基点とする不定積分 (indefinite integral with base point a) と言う。
(積分論) 3)
ルベーグ積分論において定義域内の可測集合を変数とし、変数としての集合上での積分を値とする集合関数を関数 f の 集合関数としての不定積分 (indefinite integral as a set-function) と言う。

文献によって、逆微分の意味で「不定積分」を扱っている場合と、上述の積分論1?3の意味で扱っている場合があり、注意を要する。例えば岩波数学辞典では後者の積分論における不定積分が記述されている。ただしこれらはそれぞれ無関係ではなく、後述するように、例えば (積分論) 1) は (積分論) 3) を数直線上で考えたものであって (逆微分) 0) と同等となるべきものであり、(積分論) 2) は本質的には (積分論) 1) や (積分論) 3) の一部分と見なすことができる。また (積分論) 2) から (逆微分) 0) を得ることもできるが、この対応は一般には全射でも単射でもない。これ以後、この項目で考える積分は、特に指定がない限り、リーマン積分であるものとする。

また後述するように、(積分論) の意味の不定積分を連続でない関数へ一般化すると、不定積分は通常の意味での原始関数となるとは限らなくなり、(初等数学) と一致しなくなるのだが、連続関数に対してはほぼ一致する概念であるため、しばしば混同して用いられる。
逆微分の定義

関数 f(x) (積分される関数という意味で被積分関数という) が与えられたとき、微分方程式 d d x F ( x ) = f ( x ) {\displaystyle {\tfrac {d}{dx}}F(x)=f(x)} の解となる関数 F(x) 各々である特殊解を f(x) の原始関数といい、解となる関数 F(x) 全体である一般解を f(x) の 逆微分としての不定積分 という。原始関数という言葉はアドリアン=マリ・ルジャンドルによる[1]

関数 f(x) の不定積分は、端点を指定しないリーマン積分の記法(ライプニッツの記法)を用いて

∫ f ( x ) d x {\displaystyle \int f(x)\,dx}

のように表される。この表記はピエール・ド・フェルマーによる[1]。定義から、不定積分は一つの関数を表すものではないことに注意すべきである (実際、一階の微分方程式の一般解なのであるから、少なくとも一つの積分定数と呼ばれる任意定数を含む)。ただし、実用上は任意定数の値を決めるごとに原始関数が一つ現れるから、あたかも一つの関数であるかのように扱うことができる。
不定積分の定義
不定積分

閉区間上の可積分関数 f(x) と定義域内の任意の閉区間 [a, b] に対して、次の 微分積分学の基本公式 を満たす関数 F(x) を f(x) の 不定積分 という:

∫ a b f ( x ) d x = F ( b ) − F ( a ) . {\displaystyle \int _{a}^{b}f(x)\,dx=F(b)-F(a).}
基点を持つ不定積分

閉区間上の可積分関数 f(x) に対して、定義域内の定数 a から変数 x までの定積分

∫ a x f ( x ) d x {\displaystyle \int _{a}^{x}f(x)\,dx}

を f(x) の a を基点とする不定積分 という。
集合関数としての不定積分

ユークリッド空間 R n {\displaystyle \mathbf {R} ^{n}} の可測集合 X におけるルベーグ可測集合族とルベーグ測度のなす測度空間上でルベーグ積分可能な関数 f に対して、可測集合 E ⊂ X {\displaystyle E\subset X} を変数とする集合関数

Φ ( E ) := ∫ E f d μ {\displaystyle \Phi (E):=\int _{E}f\,d\mu }

を関数 f の 集合関数としての不定積分 という。このとき、 Φ ( E ) {\displaystyle \Phi (E)} は絶対連続な完全加法的集合関数となる。
逆微分と不定積分、定積分との関係

f(x) を閉区間上の連続関数とする。このとき、不定積分と逆微分は次の意味で対応する。
不定積分から逆微分

連続関数 f(x) に対して、微分積分学の基本定理(第一基本定理)から

d d x ∫ a x f ( t ) d t = f ( x ) {\displaystyle {\frac {d}{dx}}\int _{a}^{x}f(t)\,dt=f(x)}

が成り立つから、a を基点とする不定積分で与えられる関数 ∫ a x f ( t ) d t {\displaystyle \int _{a}^{x}f(t)dt} は f(x) の原始関数のひとつである。

さらに不定積分 F(x) の定義から、 G ( x ) := F ( x ) − F ( a ) {\displaystyle G(x):=F(x)-F(a)} は a を基点とする不定積分 ∫ a x f ( t ) d t {\displaystyle \int _{a}^{x}f(t)\,dt} に一致するから、f(x) の原始関数のひとつであり、従って F ( x ) = ∫ a x f ( t ) d t + F ( a ) {\displaystyle F(x)=\int _{a}^{x}f(t)\,dt+F(a)} もそうである。
逆微分から不定積分

逆に連続関数 f(x) の原始関数 F(x) が与えられれば、微分積分学の基本定理(第二基本定理)から、定義域内の任意の閉区間 [a, b] に対して 微分積分学の基本公式

∫ a b f ( t ) d t = F ( b ) − F ( a ) {\displaystyle \int _{a}^{b}f(t)dt=F(b)-F(a)}

が成立するから、F(x) は f(x) の不定積分である。
集合関数としての不定積分から基点を持つ不定積分

n = 1 で X が閉区間とし、基点 a ∈ X を固定する。 Φ ( E ) {\displaystyle \Phi (E)} を X 上の連続関数 f の「集合関数としての不定積分」とするとき、変数 x ∈ X {\displaystyle x\in X} に対して、 x ≥ a {\displaystyle x\geq a} のとき F ( x ) := Φ ( [ a , x ] ) {\displaystyle F(x):=\Phi ([a,x])} と、また x ≤ a {\displaystyle x\leq a} のとき F ( x ) := − Φ ( [ x , a ] ) {\displaystyle F(x):=-\Phi ([x,a])} と置いて得られる関数 F(x) は、 ∫ a x f ( t ) d t = F ( x ) {\displaystyle \int _{a}^{x}f(t)\,dt=F(x)} を満たすから、f(x) の「 a {\displaystyle a} を基点とする不定積分」を与える。
基点を持つ不定積分から逆微分

連続関数 f(x) の「 a {\displaystyle a} を基点とする不定積分」 ∫ a x f ( t ) d t {\displaystyle \int _{a}^{x}f(t)\,dt} は、基点 a {\displaystyle a} を定義域内で任意に移動させることで「不定積分」の部分集合を与える。ただし、この対応は一般には全射にも単射にもならない。例えば f ( x ) := x {\displaystyle f(x):=x} という連続関数を考えた場合、その「不定積分」は ∫ x d x = 1 2 x 2 + C {\displaystyle \int x\,dx={\frac {1}{2}}x^{2}+C} であるが「 a {\displaystyle a} を基点とする不定積分」 ∫ a x t d t = 1 2 x 2 − 1 2 a 2 {\displaystyle \int _{a}^{x}\,t\,dt={\frac {1}{2}}x^{2}-{\frac {1}{2}}a^{2}} からは C ≤ 0 {\displaystyle C\leq 0} の場合しか得られず、同じ C < 0 {\displaystyle C<0} を与える a {\displaystyle a} の値が二つ存在する。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:40 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef