三角関数
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

「タンジェント」はこの項目へ転送されています。バンドについては「タンジェント (バンド)」をご覧ください。

三角数」とは異なります。

三角関数(さんかくかんすう、: trigonometric function)とは、平面三角法における、角度の大きさと線分の長さの関係を記述する関数、およびそれらを拡張して得られる関数の総称である。鋭角を扱う場合、三角関数の値は対応する直角三角形の二辺の長さの比(三角比)である。三角法に由来する三角関数という呼び名のほかに、単位円を用いた定義に由来する円関数(えんかんすう、circular function)という呼び名がある。

三角関数には以下の6つがある。なお、正弦、余弦、正接の3つのみを指して三角関数と呼ぶ場合もある。

正弦、sin(sine)

余弦、cos(cosine)

正接、tan(tangent)

正割、sec(secant)

余割、csc,cosec(cosecant)

余接、cot(cotangent)

特に sin, cos は幾何学的にも解析学的にも良い性質をもっているので、様々な分野で用いられる。例えば、信号などは正弦関数と余弦関数とを組み合わせて表現することができる。この事実はフーリエ級数およびフーリエ変換の理論として知られ、音声などの信号の合成や解析の手段として利用されている。ベクトルクロス積内積は正弦関数および余弦関数を用いて表すことができ、ベクトルを図形に対応づけることができる。初等的には、三角関数は実数変数とする1変数関数として定義される。三角関数の変数に対応するものとしては、図形のなす角度や、物体の回転角、波や信号のような周期的なものにおける位相などが挙げられる。

三角関数に用いられる独特な記法として、三角関数の冪乗と逆関数に関するものがある。通常、関数 f(x) の累乗は (f(x))2 = f(x)・f(x) や (f(x))−1 = 1/f(x) のように書くが、三角関数の累乗は sin2x のように書かれることが多い。逆三角関数については通常の記法 (f−1(x)) と同じく、sin−1x などと表す(この文脈では、三角関数の逆数は分数を用いて .mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num,.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0 0.1em}.mw-parser-output .sfrac .den{border-top:1px solid}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}1/sin x または (sin x)−1 のように表される)。文献または著者によっては、通常の記法と三角関数に対する特殊な記法との混同を避けるため、三角関数の累乗を通常の関数と同様にすることがある。また、三角関数の逆関数として −1 を添え字にする代わりに関数の頭に arc を付けることがある(たとえば sin の逆関数として sin−1 の代わりに arcsin を用いる。Arc を付けて Arcsin と表すこともある)。

三角関数に似た性質をもつ関数として、指数関数双曲線関数ベッセル関数などがある。また、三角関数を利用して定義される関数としてしばしば応用されるものにsinc関数がある。
定義
直角三角形によるもの∠C を直角とする直角三角形ABC

直角三角形において、1 つの鋭角の大きさが決まれば、三角形の内角の和は 180°であることから他の 1 つの鋭角の大きさも決まり、3 辺の比も決まる。ゆえに、角度に対して辺比(三角比)の値を与える関数を考えることができる。

∠C を直角とする直角三角形 ABC において、それぞれの辺の長さを AB = h, BC = a, CA = b と表す(図を参照)。∠A = θ に対して三角形の辺の比 h : a : b が決まることから、 sin ⁡ θ = a h cos ⁡ θ = b h tan ⁡ θ = a b = sin ⁡ θ cos ⁡ θ sec ⁡ θ = h b = 1 cos ⁡ θ cosec ⁡ θ = csc ⁡ θ = h a = 1 sin ⁡ θ cot ⁡ θ = b a = 1 tan ⁡ θ {\displaystyle {\begin{aligned}\sin \theta &={\frac {a}{h}}\\\cos \theta &={\frac {b}{h}}\\\tan \theta &={\frac {a}{b}}={\frac {\sin \theta }{\cos \theta }}\\\sec \theta &={\frac {h}{b}}={\frac {1}{\cos \theta }}\\\operatorname {cosec} \theta &=\csc \theta ={\frac {h}{a}}={\frac {1}{\sin \theta }}\\\cot \theta &={\frac {b}{a}}={\frac {1}{\tan \theta }}\end{aligned}}}

という 6 つの値が定まる。それぞれ正弦(sine; サイン)、余弦(cosine; コサイン)、正接(tangent; タンジェント)、正割(secant; セカント)、余割(cosecant; コセカント)、余接(cotangent; コタンジェント)と呼び、まとめて三角比と呼ばれる。ただし cosec は長いので csc と略記することも多い。ある角 ∠A に対する余弦、余割、余接はその角 ∠A の余角 (co-angle) に対する正弦、正割、正接として定義される。 cos ⁡ θ = sin ⁡ ( 90 ∘ − θ ) = sin ⁡ ( π 2 − θ ) csc ⁡ θ = sec ⁡ ( 90 ∘ − θ ) = sec ⁡ ( π 2 − θ ) cot ⁡ θ = tan ⁡ ( 90 ∘ − θ ) = tan ⁡ ( π 2 − θ ) {\displaystyle {\begin{aligned}\cos \theta &=\sin \left(90^{\circ }-\theta \right)=\sin \left({\frac {\pi }{2}}-\theta \right)\\\csc \theta &=\sec \left(90^{\circ }-\theta \right)=\sec \left({\frac {\pi }{2}}-\theta \right)\\\cot \theta &=\tan \left(90^{\circ }-\theta \right)=\tan \left({\frac {\pi }{2}}-\theta \right)\end{aligned}}}

三角比は平面三角法に用いられ、巨大な物の大きさや遠方までの距離を計算する際の便利な道具となる。角度 θ の単位は、通常またはラジアンである。

三角比、すなわち三角関数の直角三角形を用いた定義は、直角三角形の鋭角に対して定義されるため、その定義域は θ が 0° から 90° まで(0 から π / 2 まで)の範囲に限られる。また、θ = 90° (= π / 2) の場合 sec, tan が、θ = 0°(= 0) の場合 csc, cot がそれぞれ定義されない。これは分母となる辺の比の大きさが 0 になるためゼロ除算が発生し、その除算自体が数学的に定義されないからである。一般の角度に対する三角関数を得るためには、三角関数について成り立つ何らかの定理を指針として、定義の拡張を行う必要がある。単位円による定義は初等幾何学におけるそのような拡張の例である。他に同等な方法として、正弦定理余弦定理を用いる方法などがある。
単位円によるもの6種類の三角関数、単位円、θ = 0.7ラジアンの角度に対する直線の図。直線の色が変わる点3点を考えたとき、1、Sec(θ)、Csc(θ)については原点から各点への線分の長さを表し、Sin(θ)、Tan(θ)、1 は各点のy成分を表す。Cos(θ)、1、Cot(θ)は各点の x 成分を表す。単位円による、6つの三角関数が表す長さ


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:114 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef