一般相対性理論の概説
[Wikipedia|▼Menu]
カッシーニ宇宙探査機による一般相対性理論の高精度の試験(イメージ図)。地球と探査機の間で送信される無線信号(緑の波)は、太陽の質量による時空の歪み(青線)により遅延する。

一般相対性理論の概論(いっぱんそうたいせいりろんのがいろん)では、アルベルト・アインシュタインにより1907年から1915年の間に発展された重力の理論について説明する。

一般相対性理論によると、質量間の観測される重力効果は時空のゆがみから生じる。

20世紀初頭まで、ニュートンの万有引力の法則は質量間の重力の確実な記述として200年以上にわたり受け入れられていた。ニュートンのモデルにおいては、重力は質量を持つ物体間の引力の結果である。ニュートンでさえその力の未知の性質に苦悩したが、この基本的な枠組みは運動を記述するのに非常に上手くいった。

実験や観測は、アインシュタインの重力の記述が、水星や他の惑星軌道のわずかな異常などニュートンの法則では説明できないいくつかの効果を説明していることを示している。一般相対性理論は重力波重力レンズや重力時間膨張として知られる時間に対する重力の影響など、重力の新たな効果を予測する。これらの予測の多くは、実験、観測、近年では重力波により確認されている。

一般相対性理論は現代天体物理学において不可欠な道具に発展した。これにより重力の効果が光でさえも逃げ出すことができないほど強い空間領域であるブラックホールの現在の理解の基礎が提供されている。これらの強い重力は特定の種類の天体(活動的な銀河核やマイクロクエーサーなど)から放出される強い放射の原因であると考えられている。一般相対性理論は宇宙論の標準ビッグバンモデルの枠組みの一部でもある。

一般相対性理論は唯一の重力の相対論的理論ではないが、実験データと矛盾しない最も単純な理論である。それでも多くの未解決の問題が残っており、その中でも最も基本的なものは一般相対性理論は量子物理学の法則とどのように調和し、完全で自己矛盾のない量子重力の理論を生成できるかというものである。
特殊相対性理論から一般相対性理論へ

1905年9月、アルベルト・アインシュタインニュートンの運動法則電気力学電荷を持つ物体間の相互作用)と調和させる特殊相対性理論を発表した。特殊相対性理論は空間と時間の新たな概念を提案することにより、物理学の全てに対して新たな枠組みを導入した。当時受け入れられていたいくつかの物理理論はこの枠組みと矛盾していた。鍵となる例は質量により物体が受ける相互引力を説明するニュートンの重力理論である。

アインシュタイン含む何人かの物理学者は、ニュートンの重力法則と特殊相対性理論を調和させる理論を探究し、アインシュタインの理論のみが実験や観測と一致することが分かった。理論の基本的な考えを理解するために、1907年から1915年の自由落下の観測者など単純な思考実験から重力の完全な幾何理論までのアインシュタインの思考を追うことは勉強になることである[1]
等価原理

自由落下するエレベーターに乗っている人は無重力状態を感じる。物体は静止したまま浮遊するか一定速度で漂流する。エレベーター内の全てが一緒に落下しているため、重力効果を観測することができない。このように、自由落下している観測者が経験するものと大きな重力源から遠く離れた深宇宙の観測者が経験するものは区別できない。これらの観測者はアインシュタインが特殊相対性理論において特権的(「慣性」)観測者と書いた者であり、はこの観測者に対して一定速度で直線に沿って進む[2]

アインシュタインは、特殊相対性理論における無重力の観測者と慣性の観測者が同様に経験することが重力の基本的性質を現していると仮定し、これを一般相対性理論の基礎として等価原理で定式化した。大まかに言うと、この原理は自由落下するエレベーターにいる人は自由落下していることを知ることはできないというものである。このような自由落下環境における全ての実験は、静止している時や全ての重力源から遠く離れた深宇宙で一様に動いている観測者に対するであろうものと同じ結果になる[3]
重力と加速度加速するロケット(左)と地球上(右)において床に落ちるボール。効果は同じである。

重力のほとんどの効果は自由落下で消えるが、重力の効果と同じように見える効果は加速された座標系により作り出される。密室にいる観測者は次のどれに該当するか分からない。

部屋は地表上にあり、物体は重力により引き下げられているため、物体が床に落ちている。

部屋が宇宙空間にあり9.81 m/s2 で加速しておりあらゆる重力源から離れているロケット上にあり、物体が床に落ちている。物体は加速する車の運転手を座席の後ろに押す同じ「慣性力」により床に引っ張られる。

逆に、加速される基準系で観測される効果は対応する強度の重力場でも観測される必要がある。次節でも説明するように、アインシュタインはこの原理により1907年に新しい重力の効果を予測することができた。

加速される基準系の観測者は、物理学者が見かけの力と呼ぶものを導入して自分自身と周りの物体が経験した加速を説明する必要がある。一例として加速する車の運転手を座席へ押し込む力についてはすでに述べた。もう一つの例としては頂点のように回転しようとすると腕が上下に引っ張られると感じる力がある。アインシュタインの主な洞察は、一定の身近な地球の重力場の引き寄せる力は、これらの見かけの力と基本的に同じであるというものであった[4]。見かけの力の大きさは常にそれが作用する物体の質量に比例するように見える。例えば、運転席は車と同じ速度で運転者を加速させるのに十分な力を働かせる。アインシュタインは類推により重力場にある物体は、ニュートンの重力法則で具体化されているようにその質量に比例した重力を感じるべきだと提案した[5]
物理的結果

1907年の段階ではアインシュタインは一般相対性理論の完成まで8年を残していたが、新たな理論を発展するための出発点である等価原理に基づいた新しい検証可能な予測を多く行うことができた[6]光波が重力場に対して上方に動くときの光の重力の赤方偏移(下の黄色の星により起こされる)


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:107 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef