一般相対性理論の概説
[Wikipedia|▼Menu]
カッシーニ宇宙探査機による一般相対性理論の高精度の試験(イメージ図)。地球と探査機の間で送信される無線信号(緑の波)は、太陽の質量による時空の歪み(青線)により遅延する。

一般相対性理論の概論(いっぱんそうたいせいりろんのがいろん)では、アルベルト・アインシュタインにより1907年から1915年の間に発展された重力の理論について説明する。

一般相対性理論によると、質量間の観測される重力効果は時空のゆがみから生じる。

20世紀初頭まで、ニュートンの万有引力の法則は質量間の重力の確実な記述として200年以上にわたり受け入れられていた。ニュートンのモデルにおいては、重力は質量を持つ物体間の引力の結果である。ニュートンでさえその力の未知の性質に苦悩したが、この基本的な枠組みは運動を記述するのに非常に上手くいった。

実験や観測は、アインシュタインの重力の記述が、水星や他の惑星軌道のわずかな異常などニュートンの法則では説明できないいくつかの効果を説明していることを示している。一般相対性理論は重力波重力レンズや重力時間膨張として知られる時間に対する重力の影響など、重力の新たな効果を予測する。これらの予測の多くは、実験、観測、近年では重力波により確認されている。

一般相対性理論は現代天体物理学において不可欠な道具に発展した。これにより重力の効果が光でさえも逃げ出すことができないほど強い空間領域であるブラックホールの現在の理解の基礎が提供されている。これらの強い重力は特定の種類の天体(活動的な銀河核やマイクロクエーサーなど)から放出される強い放射の原因であると考えられている。一般相対性理論は宇宙論の標準ビッグバンモデルの枠組みの一部でもある。

一般相対性理論は唯一の重力の相対論的理論ではないが、実験データと矛盾しない最も単純な理論である。それでも多くの未解決の問題が残っており、その中でも最も基本的なものは一般相対性理論は量子物理学の法則とどのように調和し、完全で自己矛盾のない量子重力の理論を生成できるかというものである。
特殊相対性理論から一般相対性理論へ

1905年9月、アルベルト・アインシュタインニュートンの運動法則電気力学電荷を持つ物体間の相互作用)と調和させる特殊相対性理論を発表した。特殊相対性理論は空間と時間の新たな概念を提案することにより、物理学の全てに対して新たな枠組みを導入した。当時受け入れられていたいくつかの物理理論はこの枠組みと矛盾していた。鍵となる例は質量により物体が受ける相互引力を説明するニュートンの重力理論である。

アインシュタイン含む何人かの物理学者は、ニュートンの重力法則と特殊相対性理論を調和させる理論を探究し、アインシュタインの理論のみが実験や観測と一致することが分かった。理論の基本的な考えを理解するために、1907年から1915年の自由落下の観測者など単純な思考実験から重力の完全な幾何理論までのアインシュタインの思考を追うことは勉強になることである[1]
等価原理

自由落下するエレベーターに乗っている人は無重力状態を感じる。物体は静止したまま浮遊するか一定速度で漂流する。エレベーター内の全てが一緒に落下しているため、重力効果を観測することができない。このように、自由落下している観測者が経験するものと大きな重力源から遠く離れた深宇宙の観測者が経験するものは区別できない。これらの観測者はアインシュタインが特殊相対性理論において特権的(「慣性」)観測者と書いた者であり、はこの観測者に対して一定速度で直線に沿って進む[2]

アインシュタインは、特殊相対性理論における無重力の観測者と慣性の観測者が同様に経験することが重力の基本的性質を現していると仮定し、これを一般相対性理論の基礎として等価原理で定式化した。大まかに言うと、この原理は自由落下するエレベーターにいる人は自由落下していることを知ることはできないというものである。このような自由落下環境における全ての実験は、静止している時や全ての重力源から遠く離れた深宇宙で一様に動いている観測者に対するであろうものと同じ結果になる[3]
重力と加速度加速するロケット(左)と地球上(右)において床に落ちるボール。効果は同じである。

重力のほとんどの効果は自由落下で消えるが、重力の効果と同じように見える効果は加速された座標系により作り出される。密室にいる観測者は次のどれに該当するか分からない。

部屋は地表上にあり、物体は重力により引き下げられているため、物体が床に落ちている。

部屋が宇宙空間にあり9.81 m/s2 で加速しておりあらゆる重力源から離れているロケット上にあり、物体が床に落ちている。物体は加速する車の運転手を座席の後ろに押す同じ「慣性力」により床に引っ張られる。

逆に、加速される基準系で観測される効果は対応する強度の重力場でも観測される必要がある。次節でも説明するように、アインシュタインはこの原理により1907年に新しい重力の効果を予測することができた。

加速される基準系の観測者は、物理学者が見かけの力と呼ぶものを導入して自分自身と周りの物体が経験した加速を説明する必要がある。一例として加速する車の運転手を座席へ押し込む力についてはすでに述べた。もう一つの例としては頂点のように回転しようとすると腕が上下に引っ張られると感じる力がある。アインシュタインの主な洞察は、一定の身近な地球の重力場の引き寄せる力は、これらの見かけの力と基本的に同じであるというものであった[4]。見かけの力の大きさは常にそれが作用する物体の質量に比例するように見える。例えば、運転席は車と同じ速度で運転者を加速させるのに十分な力を働かせる。アインシュタインは類推により重力場にある物体は、ニュートンの重力法則で具体化されているようにその質量に比例した重力を感じるべきだと提案した[5]
物理的結果

1907年の段階ではアインシュタインは一般相対性理論の完成まで8年を残していたが、新たな理論を発展するための出発点である等価原理に基づいた新しい検証可能な予測を多く行うことができた[6]光波が重力場に対して上方に動くときの光の重力の赤方偏移(下の黄色の星により起こされる)

最初の新たな効果は、光の重力周波数シフトである。加速するロケット船に乗っている2人の観測者を想定する。このような船に乗ると「上」と「下」という自然な概念がある。船が加速する方向は「上」であり、くっついていない物体は反対方向に加速し「下向き」に落ちる。観測者の1人がもう1人よりも「高い」と仮定する。低いところの観測者が高いところの観測者へ光信号を送信すると特殊相対性理論から計算されるように、加速度により光が赤方偏移し、2番目の観測者は最初の観測者よりも低い周波数の光を測定する。逆に、高い観測者から低い観測者に送られる光は青方偏移、つまり高い周波数にシフトする[7]。アインシュタインは、このような周波数シフトは重力場でも観測される必要があると主張した。これは左図に示されている。これは、重力加速度に逆らって上方向に進むにつれて徐々に赤方偏移する光波を示している。以下に説明するようにこの効果は実験的に確認されている。

この重力による周波数シフトは重力による時間の遅れに対応する。「高い」観測者は「低い」観測者よりも低い周波数を持つように同じ光波を測定するため、高い観測者に対しては時間が早く経過しなければならない。したがって、重力場において低い観測者の時間は遅く過ぎていく。

各々の観測者について、自身の基準系内で静止している事象もしくは過程に対する時間の流れに観測可能な変化がないことを強調することは重要である。各観測者の時計で計時される5分卵(five-minute-eggs)は 同じ一貫性を持つ。各時計で1年がたつと各観測者はその分老ける、つまり、各時計はその近くで発生する全ての過程と完全な一致を見る。別の観測者間で時計が比較されるときのみ、高い観測者よりも低い観測者の方が時間の進みが遅いことに気づくことができる[8]。この効果は微小であるが、以下で記述されるように複数の実験で実験的に確認されている。

アインシュタインは同様の方法で重力による光のゆがみを予測した。重力場においては、光は下向きにゆがむ。定量的には、彼の結果は2分の1であった。正しい導出には等価原理だけでなく一般相対性理論のより完全な定式化を要する[9]
潮汐効果地球の中心に向かって落下する2つの物体は、落下するにつれて互いに向かって加速する。

重力効果と慣性効果の等価性は、重力の完全な理論を構成するものではない。地表上の自分の位置近くで重力を説明する場合、基準系が自由落下していないことに注意し見かけの力を予期することで、適切な説明が提供される。しかし、地球のある側で自由落下する基準系は、地球の反対側の人々が反対方向に引っ張る重力を経験する理由を説明できない。

同じ効果のより基本的な表れには、地球に向かって並んで落下している2つの物体が含まれる。これらの物体と並んで自由落下している基準系においては、無重力で空間に停止しているように見えるが、正確にはそうではない。これらの物体は正確に同じ方向に落ちるのではなく、空間内の1つの点、地球の重心に向かって落下する。結果としてもう1つの物体に向かう各物体の運動の成分がある(図参照)。自由落下するリフトなどの小さな環境ではこの相対加速度は非常に小さく、地球の反対側のスカイダイバーにとっては効果が大きくなる。これらの力の違いは地球の海の潮汐の原因でもあるため、この現象には「潮汐効果」という名前が使われている。

慣性と重力の等価性では潮汐効果を説明できない。重力場の変動を説明できないからである[10]。これを説明するためには、物質(地球の大きな質量など)が周囲の慣性環境に影響を及ぼす方法を説明する理論が必要である。
加速度から幾何へ


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:107 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef