ロッカーアーム
[Wikipedia|▼Menu]
シーソー式ロッカーアームとロッカーシャフト

ロッカーアーム(rocker arm)とは、レシプロエンジンにおける動弁系部品の一つで、カムの力を受けてバルブを作動させる役割を果たすものである。
概要

レシプロエンジンの中でも、OHVや、SOHCDOHCといった動弁形式に用いられている。一般的には、シリンダーヘッド内に取り付けられている。カムシャフトのカム山の外周輪郭に沿って並進運動を生み出し、それをバルブに伝えることでバルブを開ける。バルブを閉じるにはスプリングを利用するが、特殊な例としてはデスモドロミック式エンジンのように、バルブを閉じる役割もロッカーアームで行なう場合がある。

カムからロッカーアームへの伝達は、SOHCのようにカムから直接伝えられる場合と、OHVのようにプッシュロッドを介して伝えられる場合がある。ロッカーアームからバルブへの伝達は、直押しとすることが一般的である。ただしタペットアジャストスクリューやタペットシムあるいはラッシュアジャスター(オイルタペット)といった、バルブクリアランスを適正にするための機構がこれらの伝達経路の途中に挿入される。

ロッカーアームは硬く靭性の大きな鍛造品で造られる場合が多い。更にカムやバルブとの接触面には、耐摩耗性に優れた特殊合金が接合されたり、窒化クロム等の硬質のめっき処理が施されるなど、耐摩耗性向上や摺動抵抗低減を図られることが多い。中には、更なる耐摩耗性向上や摺動抵抗低減を狙って、接触面にころ軸受などの軸受を採用するものもある。
利点と欠点

シリンダーヘッドに固定される部分が支点、カムからの入力を受ける部分が力点、バルブを押し付ける部分が作用点となり、てこの原理で作動する。これら3つの位置の設定によりてこ比を変更し、カム山高さに倍率をかけて、バルブのリフト量を大きくできるところがロッカーアームの最大の利点である。このてこ比は一般的にロッカーアームレシオと呼ばれ、支点から接点までの距離を1として、1.4レシオ、1.6レシオなどと言った形で表記される。

その他の利点としては、作用点が二股となったロッカーアームを用いることで、1つのカムで2つのバルブを作動させたり、斜めあるいはクランク状のロッカーアームを用いることで、カムとバルブの位置関係をオフセットさせたりもできる。また、バルブスプリングの反力をカムが直接受ける直打式と違い、ロッカーアームによるてこを介した方が、カムシャフトの回転抵抗が少なくなるという利点もある。

欠点としては、ロッカーアームの慣性質量により、高回転域でのカムへの追従性が悪くなると言われている。実際には、てこの原理で直打式より小さな力でバルブを動かせるロッカーアーム式の方が動弁系を軽くできる場合もあり、この点では必ずしも直打式のほうが優れているとは言えない。また直打式ではリフト量はバルブリフター径の制約を受け、リフト量に応じたリフター径が必要となる。このためハイリフトになるほど大きなリフター径が必要となり、結果的にリフター径の拡大による慣性質量の増加、摺動面拡大による抵抗増を招く。一方で、ロッカーアームではリフターは存在しないため、リフト量とロッカーアームの設計次第で直打式よりも慣性質量を低減する事もできる。実際にハイリフトと共に慣性質量の低減が必要となるF1カーや高回転・高出力の市販車などでは、直打式ではなくスイングアーム式ロッカーアーム(フィンガーフォロワー)を用いるケースがある。このケースではカムシャフトはバルブの軸線上に位置し、力点と作用点はほぼ同位置のレバー比がほぼ1となるなど直打式と類似したレイアウトとなる。しかし高回転エンジンでは慣性質量増を招くローラーフォロワーは好まれないためスリッパー式が選ばれる事が多く、さらなる軽量化のためロッカーアームの小型化が要求され摺動面積も制限される。これにハイリフトおよび高レートなバルブスプリングからの高荷重が加わることで摺動面は厳しい摩擦と高い面圧に晒されるため、ロッカーアームの摺動面には高い耐摩耗性と耐ピッチング性が要求される。

さらにラッシュアジャスター機構を採用した場合、直打式では上下動するリフター内に機構を内蔵する事となり慣性質量の増加を招くが、スイングアーム式では可動しない支点部位にピボットを置くため慣性質量の点では有利となる。しかし、ピボットによるロッカーアームの保持は剛性の不足、高回転でのロッカーアームの脱落が起きやすい事もあり、必ずしも高回転で有利というわけでもない。この関係から高回転化する場合、ラッシュアジャスターから固定ピボットに置き換えるケースもある。また、ロッカーアームは硬い金属製とはいえ、バルブが叩く際の衝撃でわずかにたわむために、高回転域ではこのたわみが問題になる場合もあると言われる。しかしこれも、OHVのプッシュロッドのたわみに比べれば小さく、相対的には大きな問題とは言えず、特に力点と作用点が近いスイングアーム式では無視できる範囲である。

その他の欠点としては、シーソー式ではロッカーアームの長さを確保するためにバルブ挟み角が大きくなりやすく、結果として燃焼室や吸排気ポートの形状に制約が掛かり、エンジンの高効率化がしにくいという面がある。逆にDOHCのスイングアーム式では直打式よりも狭角化を行いやすいため、直打式からロッカーアームに変更する事で狭角化を行うエンジンもある。

また、スリッパー式ロッカーアームでのカムの潤滑は直打式よりも不利とされる。これはスリッパー式ロッカーアームでは摺動面が純すべり接触であり接触面も限定されるのに対し、直打式ではカムとバルブ軸をオフセットすることでリフタ(シム)が回転し転がり接触成分が発生、リフタの接触面も限定されないなどの理由がある。しかし後述のローラーロッカーアームにおいては転がり接触が主体となるため直打式よりも潤滑は有利となる。このため近年はローラーロッカーアームの採用が増えている。

ラッシュアジャスターを用いない場合、タペットクリアランスの調整が必要となる場合があるが、シム調整式以外のロッカーアームの場合アジャストスクリューによって簡単に調整できるという利点がある。直打式の場合、シムもしくはリフターの厚みで調整する必要があり、その分だけのシムもしくはリフターが必要となる。カムとの摺動面に配されるアウターシムのリフターであれば特殊工具等によりカムシャフトを脱着せずにシム交換をすることも可能であるが、バルブと接するリフター内部に配されるインナーシムやシムを無くしリフターそのものの厚みで調整するシムレスリフターの場合はカムシャフトの取り外しが必要となるため、調整作業における手間は格段に増える。

カムプロフィールの自由度という点では、カムとの接触面が平面となる直打式では対応が困難な凹カムに対しても摺動面が一定の凸曲面もしくはローラーであるロッカーアームであれば対応できるため有利といえる。
方式の違い

ロッカーアームはその形状により「シーソー式」と「スイングアーム式」の二種類に大別できる。
シーソー式

支点が中間にあり、その両端に力点と作用点があるものを「シーソー式」と呼ぶ。基本原理は第1種てこであり、カムから入力された力は、支点に対してほぼ点対称の方向へ出力される。この方式ではてこ比を大きく設定しやすいために、バルブリフト量の増加の効果が高いのも利点であるが、後述するスイングアーム式よりも全長が長くなることが多いので、たわみが発生しやすい。[1]この方式は、OHVのほぼすべてとSOHCの多くで採用され、通常ロッカーアームといえばこちらを指すことが多い。

OHCの場合にはシーソーのカムシャフト側にカム山との接触面(スリッパー)が設けられ、バルブ側に調整タペットが設置される場合が多い。OHVの場合にはプッシュロッドがカム山との接触と調整タペットの両方の機能を持つ為、シーソーのプッシュロッド側にはロッドを受け止める凹面が設けられ、バルブ側にスリッパーのみが設けられる場合が多い。
スイングアーム式

支点が一方の端にあり、力点が中間に、もう一方の端が作用点となるものを「スイングアーム式」と呼ぶ。基本原理は第2種てこあるいは第3種てこであり、カムから入力された力はほぼ同じ方向へ出力される。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:86 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef