レールガン
[Wikipedia|▼Menu]
.mw-parser-output .hatnote{margin:0.5em 0;padding:3px 2em;background-color:transparent;border-bottom:1px solid #a2a9b1;font-size:90%}

この項目では、電磁兵器の「レールガン」について説明しています。

第二次世界大戦の「Railway gun」については「列車砲」をご覧ください。

SFを含む架空のレールガンやその類型については「レールガンに関連する作品の一覧」をご覧ください。

レールガンの駆動原理の模式図。

レールガン(: railgun)は、物体を電磁気力(ローレンツ力)により加速して撃ち出す装置である。

なお、電磁気力に基づく投射様式全般の呼称として、電磁投射砲(でんじとうしゃほう)やEML[1] 、電磁加速砲[2]などがある。原理が単純で古くから知られていることもあり、ビデオゲームをはじめとするサイエンス・フィクション作品にも幅広く登場しており、それらの作中では兵器として扱われることが多い(レールガンに関連する作品の一覧)。
概要

レールガンは、並行に置かれた陽極と陰極の2本のレール上に弾体となる金属片を乗せて電流を流し、電磁力により金属片を駆動し射出するというものである。

既に実用化に向けた取り組みが各国で行われており、米国ロシア中国トルコ日本などがレールガンの軍事研究を進めている。アメリカは2005年に世界に先駆けて研究開発を開始したが、2021年に開発の中止を発表。日本は2023年に世界初となる洋上での発射試験に成功するなど開発を継続している(後述)。
原理・構造

単純には、並行に置かれた2本の電極をレールとし、その上に弾体となる金属片を乗せ、レールのそれぞれを電源の両極につなげば実現する。

2本のレールの通電側が銃尾に相当する。

銃尾に近いところで、2つの電極両方と触れるように弾体を置く(いわゆる「弾の装填」に相当)ことで電気回路が形成される。

電流が流れている間、弾体は、レールの解放端(電流が流れていない側)へ向かう方向に駆動される。

この駆動力は磁場の中に置いた導体に電流を流した時に生じる力、あるいは通電中の導体同士に働く相互作用としてフレミング左手の法則に基づくごくごく一般的なものであり、以下に述べる通り基本原理自体は単純である。
電流によって生じる磁場

レールと弾体によって形成される「コの字」状の回路に通電するとき、電流を取り巻く磁場が考えられる。電流によって生ずる磁場の方向は、「右手の親指を電流の方向に沿わせたときに他の4指が巻く向き」である。「コの字」の収まる面内で弾体の周囲に着目すると、磁場の向きは面に垂直でかつ、「コの字」の内側と外側で逆向きになっている。

さらにいうと「コの字」の角の部分の内側が特に磁場が強く、これが駆動に寄与する。弾体の内部に分布する駆動力は一様ではなく、レール方向に対し減速する方向や横向きに働く部分もあるが、前述の『「コ」の字の角の内側』が支配的であり、弾体を加速させている。

※高出力を得るためには、レール電流の他に追加の磁場源(磁石や電磁石)を置くほうが容易である。
電流と磁場と駆動力の関係

一様磁場を仮定した場合、金属片に働く駆動力 F {\displaystyle {\boldsymbol {F}}} は、磁束密度を B {\displaystyle {\boldsymbol {B}}} 、 電流強度を I {\displaystyle {\boldsymbol {I}}} 、 レール間隔を ℓ {\displaystyle \ell } とするとき F = ℓ I × B {\displaystyle {\boldsymbol {F}}=\ell {\boldsymbol {I}}\times {\boldsymbol {B}}}

で与えられる。

これはレールガンに照らし合わせると、電流によって生じる磁場が無視できるほどの強磁場が加えられている場合、「電流の方向」と「磁場の方向」の両者が収まる平面を考えたとき、その平面に対して直交する方向に駆動する。これらは

「電流の方向」と「磁場の方向」とが互いに90°で直交するときに最大の駆動力が得られる。

駆動力は、レール間隔、電流強度、磁束密度それぞれに比例する。

ことを意味する。

さらに以下のような条件が加わる。

レールと弾体のみで構成する場合の磁場は一様とはほど遠いから、局所ごとに上の式に従うと考えられる。

レールと弾体のみで構成する場合は磁場も電流に概ね比例するから、電流の2乗に比例した駆動力となる。

レールと弾体のみの場合、弾体を加速する電磁力は、主に、レールと弾体の接点近傍に集中する。さらに、直線導体のみで強磁性体を介さない機構であるため、コイルや磁石を用いたリニアモータに比べて大電流を必要とする。

実際には、回路で生じる磁場とは別に磁束源を足した方が高出力を得やすい。

通電し弾体が駆動されているとき、2本のレール棒についても、それぞれ互いに遠ざかる方向に駆動されるため、これに耐えるよう固定する必要がある。

弾体はレールと接触している間は駆動し続けるため、原理上はレールが長いほど発射速度を上げられる。

投射される物体は必ずしも電気伝導体である必要はなく、この金属箔を貼り付けた非導電性個体をもちいる様式もある[3]。プラズマなどを駆動媒体とし、非導電性の弾体を飛ばすことも可能。

なお、プラズマを駆動体に用いる場合は、プラズマが弾体を追い越して漏れないよう、一般の火薬ガンやガスガンと同様かそれ以上に気密性に富んだ「砲弾形状に合わせた砲身」が必要となる、ただしレールガンの砲身は電気絶縁性が要求される。実際に開発・利用されているレールガンでは、プラズマ化に伴う膨張力(→圧力)やなどに耐えられなければならず、またプラズマ化に伴う膨張圧も弾体の加速に利用する場合は、尾栓に相当する部品を必要とし、これは非伝導体である必要がある。なお、単純にプラズマ膨張圧のみを弾体加速に用いる形式は、サーマルガンと呼ばれる別形態の装置である。
特性

極超音速で弾丸を発射するため、従来火砲に比べ威力・射程が増大

電気エネルギーで加速するため、威力可変・発射薬を使用せず安全

弾丸がミサイルと比較して安価

接触型ということもあり他の電磁駆動に比べて損失が大きく電源要求が大きい

レールガンが打ち出す弾体の速度は、単純化された理論上は電流/磁場強度とレール長に依存する。実際にはレール長が十分であれば電磁力と摩擦等の各種損失がつりあう速度が最大速度となる。

損失が無視できる条件下では、加速度は電流と磁場の強度に依存する。次のようなレールガン特有の損失があり、これらは弾速上昇にともない増大する。

速度表皮効果(後述)によって投入エネルギーの多くが
ジュール熱として奪われる。

温度上昇や、接触不良により不要なプラズマが発生する。

また、大電流の供給、加速距離やレールの摩擦電気抵抗・耐熱限界といった点に物理的・技術的制約がある。
到達速度

1960年代には、オーストラリア国立大学に所属するリチャード・マーシャルらのグループが550メガジュールを入力した長さ5メートルのレールガンによって、3グラムの弾丸を5.9km/s ( = 5,900m/s) での射出に成功した。なお、21世紀初頭には最大速度8km/s程度のものが開発されている。

比較として火薬を使う火器の弾丸の銃口初速度を記すと、

拳銃 230 - 680m/s

ライフル銃 750 - 1,800m/s程度

戦車砲 仏GIAT製120mm/L52滑腔砲にAPFSDSであるOFL120F1タングステン徹甲弾を使用時 1,790m/s

火薬と水素を使ったライトガスガン 6 - 7km/s

である。

火薬を使用する火器では、燃焼によって生じる熱エネルギーの大半が弾体の駆動に寄与せず、また弾体の速度はガスの膨張速度を超えられない。最新の爆薬を使ってせいぜい2km/s程度である。これらと比べて、現状の実験段階のレールガンでも遥かに大きい発射速度が得られる。
速度表皮効果レールガンの速度表皮効果
投射体が高速移動すると磁界変化が間に合わず、電流路が狭い範囲に押し込められる。1.ローレンツ力を受けて投射体が加速される
2.速度表皮効果によって電流の流れる範囲が狭くなり、やがてジュール熱によって「溶解」「プラズマ化」する
3.発生したプラズマが新たな電流の流れを作って投射体への加速が行なわれなくなる
[4]

導体内の磁場が変化するとき、磁場の変化を妨げる方向に誘導起電力が生じる(レンツ則に関連)。これは電気を流す視点で見ると、自己インダクタンスと呼ばれるある種の抵抗とみなされ、導体の内部の電流路の変化を妨げ、変動する電流を導体の表面へ追いやるように作用する。

レールガンでは弾体の移動に合わせてレール内の電流路が移動する際に自己インダクタンスの影響を受ける。すなわち、レール側では弾体との接触部近傍で表皮に電流が集まり、弾体側ではレールとの接触部近傍において後端側へ電流が集中する。

この作用は交流電流の表皮効果と同様に、移動が高速になるにつれ顕著となる。

条件次第では、弾体の後端やレールの表面が、ジュール熱により溶解し、プラズマ化してしまう。

このプラズマが新たな電流路となるとき、電磁力の他に速度表皮効果を受けるため予測しがたい挙動となり、加速に寄与せず散逸する。

レールガンの高性能化は速度表皮効果の対策次第と考えられている[4][要ページ番号]。
類似の投射方式
リニアモーター
主に、操作される磁場によって導体や磁性体、磁石を加速する装置を指す。レールガンが1巻きコイル1個であるのに対しリニアモーターは多数の電磁石 を並べて構成される。
コイルガン
コイル(ソレノイド)内に弾を通過させる方法を利用したもの。構造上の問題からレールガンのような高速を得にくいという欠点と、非接触でロスが小さいという利点がある。
サーマルガン
電磁力ではなく電流のジュール熱 にて弾体後方の導体をプラズマ化 させ、その急激な体積増加により駆動するもの。すなわち瞬間的なプラズマ化に伴う爆発 を利用する。


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:55 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef