ルベーグの密度定理
[Wikipedia|▼Menu]

数学におけるルベーグの密度定理は、任意のルベーグ可測集合 A に対して、A のほとんど至るところにおいて A の「密度」が 1 になることを述べる。これは直観的には、A の「境界」(つまり、A の外側にも内側にもはみ出すような「近傍」を持つような点全体の成す集合)は、ルベーグ測度に関して無視できるという意味である。

μ を Rn 上のルベーグ測度とし、 A を Rn のルベーグ可測な部分集合とする。Rnの点 x の ε-近傍における A の近似密度を次のように定める。 d ε ( x ) = μ ( A ∩ B ε ( x ) ) μ ( B ε ( x ) ) . {\displaystyle d_{\varepsilon }(x)={\frac {\mu (A\cap B_{\varepsilon }(x))}{\mu (B_{\varepsilon }(x))}}.}

ここで、Bεは x を中心とする半径 ε の閉球体である。

ルベーグの密度定理は A の殆ど全ての点 x に対して密度 d ( x ) = lim ε → 0 d ε ( x ) {\displaystyle d(x)=\lim _{\varepsilon \to 0}d_{\varepsilon }(x)}

が存在してそれが 1 に等しいと主張する。

言い換えると、いかなる可測集合 A に対しても、Rn のほとんど至るところで A の密度は 0 か 1 である[1]。それにもかかわらず、「μ(A) > 0 かつ μ(Rn ∖ A) > 0 ならば、そこで密度が 0 でも 1 でもないような Rn の点が常に存在する」という奇妙な事実が成立する。

密度定理の例として平面上の正方形を考えると、正方形の内点ではその点での密度は 1、辺上の点では 1/2、角の点では 1/4 である。平面上の点で密度が 0 でも 1 でもない点全体の成す集合(もちろん正方形の境界のこと)はではないが、(零集合になるという意味で)無視できる

ルベーグの密度定理は、ルベーグの微分定理の特殊な場合である。
関連項目

境界 (位相空間論): 位相幾何学的なアナロジー

参考文献^ Mattila, Pertti (1999). Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. .mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation.cs-ja1 q,.mw-parser-output .citation.cs-ja2 q{quotes:"「""」""『""』"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#3a3;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}ISBN 978-0-521-65595-8 


Hallard T. Croft. Three lattice-point problems of Steinhaus. Quart. J. Math. Oxford (2), 33:71-83, 1982.


記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:5899 Bytes
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef