ラグランジュの未定乗数法
[Wikipedia|▼Menu]
.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:90%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}

この記事は検証可能参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方
出典検索?: "ラグランジュの未定乗数法" ? ニュース ・ 書籍 ・ スカラー ・ CiNii ・ J-STAGE ・ NDL ・ dlib.jp ・ ジャパンサーチ ・ TWL(2011年7月)

ラグランジュの未定乗数法(ラグランジュのみていじょうすうほう、: method of Lagrange multiplier)とは、束縛条件のもとで最適化を行うための数学解析学)的な方法である。いくつかの変数に対して、いくつかの関数の値を固定するという束縛条件のもとで、別のある1つの関数の極値を求めるという問題を考える。各束縛条件に対して定数(未定乗数、Lagrange multiplier)を用意し、これらを係数とする線形結合を新しい関数(未定乗数も新たな変数とする)として考えることで、束縛問題を普通の極値問題として解くことができる方法である。
定理

ラグランジュの未定乗数法は、次のような定理として記述される。
2次元の場合

束縛条件 g(x, y) = 0 の下で、f(x, y) が最大値となる点 (a , b) を求める問題、つまりmaximize f ( x , y ) , {\displaystyle f(x,y),} subject to g ( x , y ) = 0 {\displaystyle g(x,y)=0}

という問題を考える。ラグランジュ乗数を λ とし、

F ( x , y , λ ) = f ( x , y ) − λ g ( x , y ) {\displaystyle F(x,y,\lambda )=f(x,y)-\lambda g(x,y)}

とおく。点 (a, b) で .mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num,.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0 0.1em}.mw-parser-output .sfrac .den{border-top:1px solid}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}∂g/∂x と ∂g/∂y の少なくとも一方が 0 でないならば、α が存在して点 (a, b, α) で ∂ F ∂ x = ∂ F ∂ y = ∂ F ∂ λ = 0 {\displaystyle {\frac {\partial F}{\partial x}}={\frac {\partial F}{\partial y}}={\frac {\partial F}{\partial \lambda }}=0}

が成り立つ[1]
一般の多次元の場合

n 次元空間の点 x = (x1, …, xn) のある領域 R を定義域とする被評価関数 z = f(x) が、同じ領域を定義域とする m 次元ベクトル値関数 G ( x ) = ( g 1 ( x 1 , … , x n ) ⋮ g m ( x 1 , … , x n ) ) = 0 ( 1 ) {\displaystyle {\boldsymbol {G}}({\boldsymbol {x}})={\begin{pmatrix}g_{1}(x_{1},\dots ,x_{n})\\\vdots \\g_{m}(x_{1},\dots ,x_{n})\end{pmatrix}}={\boldsymbol {0}}\qquad (1)}

の下で、R 内の点 x において極値をとるための必要条件は、その点における f の勾配ベクトル ∇ f = t ( ∂ f ∂ x 1 , … , ∂ f ∂ x n ) {\displaystyle \nabla f={}^{t}{\begin{pmatrix}{\dfrac {\partial f}{\partial x_{1}}},\dots ,{\dfrac {\partial f}{\partial x_{n}}}\end{pmatrix}}}

が、その点で、m 個の gi それぞれの勾配ベクトルが張る m 次元線型部分空間に含まれること、すなわち、スカラーの組 λ = (λ1, …, λm) を用いて、 ∇ f = ∑ i = 1 m λ i ∇ g i ( 2 ) {\displaystyle \nabla f=\sum _{i=1}^{m}\lambda _{i}\nabla g_{i}\qquad (2)}


次ページ
記事の検索
おまかせリスト
▼オプションを表示
ブックマーク登録
mixiチェック!
Twitterに投稿
オプション/リンク一覧
話題のニュース
列車運行情報
暇つぶしWikipedia

Size:39 KB
出典: フリー百科事典『ウィキペディア(Wikipedia)
担当:undef